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Probabilistic Programs — a brief history

❖ Probabilistic power domains (Jones, Plotkin, Saheb-Djahromi)

❖ The probabilistic Monad (Giry)  

❖ Source-level reasoning for sequential programs (no non-determinism) (Kozen) 

1980-ish
Randomised algorithms for resource, security, performance.

Efficient reasoning principles, semantics, algebras, logics.

1990-ish

❖  Source-level reasoning for sequential programs, pGCL (yes non-determinism!) 
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Efficient Reasoning for Probabilistic Programs 

❖  Source-level reasoning for sequential programs, pGCL (yes non-determinism!) 

❖  Non-determinism — enables transition abstraction.   
           P  Q means that program Q satisfies all the properties of P

❖ Source-level reasoning.
                  {  }  P  {  } 
              is a Probabilistic Hoare-style triple;  and  are real-valued functions.

❖ Tools for verifying all the triples…automatically if possible!

⊑

ϕ ψ
ϕ ψ



A challenge program

{ 1/N } # Precondition
var c, v = 0, 1
while(v<N or c�N){

{Inv ⇥ [v<N or c�N]}
2 (v  N) ! v= 2v

c= 2c 1/2� c= 2c+1
2 (v > N) ! v,c= v-N,c-N
{ Inv }

}
{ [c = i] } # Post condition for any 0  i < N

The invariant Inv is a function from the program state to real numbers.
It turns out that, Inv is non-zero with seemingly unrelated probabilities for ap-

proximately N2 values. Give a specific example eg with N = 5. If the invariant

cannot be expressed because it is too complex, this makes the technique of in-
variants unrealistic as an approach for verifying probabilstic programs. What we
need is a better way to formalise and automate abstract reasoning.

Our contributions

1. Basic data-refinement for pGCL for simple variable change using auxiliary
variable method, and implementation in Caesar.

2. Probabilistic auxiliary variables: definition and why we need something more
powerful than a standard coupling invariant.

3. Definition of simulation and co-simulation refinement for pGCL loops
4. Automated simulation relation proof using SMT and Caesar
5. Simulation and co-simulation as probabilistic coupling invariants
6. Set of examples including the first automated proof of the fast dice roller (as

far as we know).

3 Recap of the pGCL programming language and
expectation transformers

4 Program transformation using coupling invariants

Probabilistic program transformation is a basic approach to transforming an
abstract, and easily-understood program to an “equivalent” program, likely to be
harder to understand, but satisfying the same, or at least comparable properties.
The comparison can be formalised through the use of auxiliary variables and
coupling invariants.

Consider the following example for approximate probabilistic counting [?],
set out in Fig. 1. The program on the left Fig. 1a is an abstract program that
either doubles or leaves alone its approximate counting variable k. The required
specification is that the expected final value of k is equal to the real count N.
This can be proved quite easily via the invariant k-i. Other properties can also

❖ Why is this fast?

❖ Why is this a challenge?

❖ What is Inv ?

❖ What should we do?

Set c uniformly between 0 and N-1



c,v=0,1

{ 1/N } # Precondition
var c, v = 0, 1
while(v<N or c�N){

{Inv ⇥ [v<N or c�N]}
2 (v  N) ! v= 2v

c= 2c 1/2� c= 2c+1
2 (v > N) ! v,c= v-N,c-N
{ Inv }

}
{ [c = i] } # Post condition for any 0  i < N

The invariant Inv is a function from the program state to real numbers.
It turns out that, Inv is non-zero with seemingly unrelated probabilities for ap-

proximately N2 values. Give a specific example eg with N = 5. If the invariant

cannot be expressed because it is too complex, this makes the technique of in-
variants unrealistic as an approach for verifying probabilstic programs. What we
need is a better way to formalise and automate abstract reasoning.
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1. Basic data-refinement for pGCL for simple variable change using auxiliary
variable method, and implementation in Caesar.

2. Probabilistic auxiliary variables: definition and why we need something more
powerful than a standard coupling invariant.
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3 Recap of the pGCL programming language and
expectation transformers

4 Program transformation using coupling invariants

Probabilistic program transformation is a basic approach to transforming an
abstract, and easily-understood program to an “equivalent” program, likely to be
harder to understand, but satisfying the same, or at least comparable properties.
The comparison can be formalised through the use of auxiliary variables and
coupling invariants.

Consider the following example for approximate probabilistic counting [?],
set out in Fig. 1. The program on the left Fig. 1a is an abstract program that
either doubles or leaves alone its approximate counting variable k. The required
specification is that the expected final value of k is equal to the real count N.
This can be proved quite easily via the invariant k-i. Other properties can also

A challenge program, N=5, i=3
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The invariant Inv is a function from the program state to real numbers.
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cannot be expressed because it is too complex, this makes the technique of in-
variants unrealistic as an approach for verifying probabilstic programs. What we
need is a better way to formalise and automate abstract reasoning.

Our contributions

1. Basic data-refinement for pGCL for simple variable change using auxiliary
variable method, and implementation in Caesar.

2. Probabilistic auxiliary variables: definition and why we need something more
powerful than a standard coupling invariant.
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4. Automated simulation relation proof using SMT and Caesar
5. Simulation and co-simulation as probabilistic coupling invariants
6. Set of examples including the first automated proof of the fast dice roller (as
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4 Program transformation using coupling invariants

Probabilistic program transformation is a basic approach to transforming an
abstract, and easily-understood program to an “equivalent” program, likely to be
harder to understand, but satisfying the same, or at least comparable properties.
The comparison can be formalised through the use of auxiliary variables and
coupling invariants.

Consider the following example for approximate probabilistic counting [?],
set out in Fig. 1. The program on the left Fig. 1a is an abstract program that
either doubles or leaves alone its approximate counting variable k. The required
specification is that the expected final value of k is equal to the real count N.
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{ 1/N } # Precondition
var c, v = 0, 1
while(v<N or c�N){
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The invariant Inv is a function from the program state to real numbers.
It turns out that, Inv is non-zero with seemingly unrelated probabilities for ap-
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cannot be expressed because it is too complex, this makes the technique of in-
variants unrealistic as an approach for verifying probabilstic programs. What we
need is a better way to formalise and automate abstract reasoning.

Our contributions

1. Basic data-refinement for pGCL for simple variable change using auxiliary
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4 Program transformation using coupling invariants

Probabilistic program transformation is a basic approach to transforming an
abstract, and easily-understood program to an “equivalent” program, likely to be
harder to understand, but satisfying the same, or at least comparable properties.
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either doubles or leaves alone its approximate counting variable k. The required
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abstract, and easily-understood program to an “equivalent” program, likely to be
harder to understand, but satisfying the same, or at least comparable properties.
The comparison can be formalised through the use of auxiliary variables and
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This can be proved quite easily via the invariant k-i. Other properties can also



What should we do?



Abstract datatypes

❖ Barbara Liskov and Stephen Zilles,

 Proceedings of the ACM SIGPLAN symposium on Very high level 
languages, 1974

https://dl.acm.org/doi/proceedings/10.1145/800233
https://dl.acm.org/doi/proceedings/10.1145/800233


An example: a quick prototype

Data-type invariants

of Prog. 8.7 with a fixed-size array, instead of the sequences we used in Prog. 8.14?
How do we find out?

What we find out is that no, actually, we cannot implement Prog. 8.7 that way if
we follow the rules we have explained, not as it currently stands: it will not check.
Again, our systematic approach prevents us from making a mistake. Whatever the Ex. 10.1

allocated size of the array we used, say some N no matter how big, if a surrounding
program makes N+1 calls to its procedure add(s) with a di�erent, i.e. a new s each
time, an N-length array inside the encapsulation would have to store N+1 distinct
values — which would be impossible for our concrete version. Since it is possible for
the abstract version, the postulated array-based concrete version cannot be a correct
representation of it.

Thus we will have to change the abstract Set specification slightly, and we introduce
some new features as we do it. Below is the altered version of the abstract data-type,
a slightly di�erent specification, written out all together in one place. We indicate
the data-type invariant for the class with “Dti” (instead of the “Inv” we use for loops)
at its beginning, to reflect its special purpose:

class Set(N): # New abstract version, capacity limited.
# Dti: |ss|<=N # Data-type invariant.

local:
# Pre: N>=0 # Data-type precondition.
ss= {}

def makeEmpty:
ss= {}

def add(s):
Pre: |ss|!=N # Must hold when add() is called.
ss= ss fi {s}

def isIn(s):
return sœss

(10.1)

It has four new features (of which the fourth, the “data-type invariant”, is the most
important conceptually).

The first new feature is the parameter N for the whole Set class — it is the size
of the set the class must be able to represent.

The second new feature is the precondition Pre following the local keyword. 1

Here its condition N>=0 applies to the initialisation of the whole class, e�ectively a
precondition for creating a Set (in this case): if that condition is false, then checking
any program that creates an instance of the class will fail. 2 (Obviously it is pointless
asking the set to be able to store at least a negative number of elements.)

The third new feature is the precondition |ss|!=N placed at the beginning of
add(s), which indicates to the caller that unless that condition holds when add(s) is
called, the result of the call could be arbitrary. That is, if the program calling add(s) Ex. 10.2

Ex. 10.3
Ex. 10.4

does not establish the precondition, then the call will not check.
Preconditions, like the above, can be implemented at runtime by assert state- (Ex. 12.5)

ments, common in programming languages, 3 and principally are intended as an aid
1 The “local” is not a keyword in Python, where the treatment of variable scope and class initialisa-
tion is di�erent. In the Python style however, we use a colon and indentation when several statements
are needed.
2 The precondition of the class can refer to other, global variables as well: it must hold whenever a
new instance is created. See also Sec. 10.5(d) below.
3

Python has them.

« Table of contents Index » Copyright ©Carroll Morgan 2021–24 (JD Chiang 240918) 101

Taken from: Formal Methods, Informally, Carroll Morgan (to appear, CUP).



Programming with specifications
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SetmySet = Set(10);
mySet.add(3);
mySet.add(4);
Bool z = mySet.isIn(5);

User sideImplementor 
side



What does this mean for verification?

Probabilistic datatypes

Chris Chen1, Annabelle McIver1, and Carroll Morgan2

1 School of Computing, Macquarie University
2 University of New South Wales and Trustworthy Systems

Abstract. An encapsulated datatype collects related data together with
the operations used to access them. Datatype refinement then provides
a clear separation between the expectations of programs that call the
operations (i.e. from outside the encapsulation) and the implementation
of the operations themselves (inside the encapsulation), and it enforces
consistency between the two.

In this paper we consider encapsulated probabilistic datatypes, i.e. those
whose operations can “flip coins”; and we find as a result that the in-
terface between calling programs’ expectations and their encapsulated
probabilistic implementations must now provide consistency not only for
functional properties but also for properties related to information flow.

In this paper we use a quantitative information-flow model for programs
to give a sound basis for refinement of probabilistic datatypes.

1 Introduction

A datatype encapsulation groups related variables –the data values– together
with operations (also known as “functions”, “procedures”, “methods”) on them.
Encapsulation allows a surrounding program to use only the datatype’s oper-
ations to access the datatype’s variables: in general, the variables may not be
accessed by the program directly.

The point of encapsulation is presentation of its variables and operations
abstractly to the program containing it, as a specification: the program’s op-
eration can then be understood by referring to that specification alone. The
implementation of the encapsulation however can be given concretely, possibly
using more complicated but more e�cient structures, and that the containing
program cannot tell the di↵erence.

In that case, we say that the abstract datatype is refined by the concrete
datatype — just when no program using the second can detect that it is not us-
ing the first. Refinement ensures that understanding the surrounding program’s
operation in abstract terms corresponds with what actually happens when using
the concrete implementation is run.

We summarise these ideas as follows [12] :

Definition 1. An encapsulated datatype is a triple (I,OP, F ), where I and F

are two distinguished operations called respectively the initialisation and finali-

sation, and OP is an indexed set of publicly accessible operations. [12]

Refinement of datatypes is defined relative to refinement of the programs
that use them; and refinement itself is dependent on the a-priori identification
of (desired) properties those programs should have: in its most general sense
refinement therefore means “preservation of desired properties”. 3 In particular,
if any calling program replacing a datatype (I,OP, F ) by (I 0,OP

0
, F

0) will find
all its desired properties preserved, we say that (I,OP, F ) is itself refined by
(I 0,OP

0
, F

0). We write v for the refinement relation between programs, so
that P v P

0 meaning (as stated above) desired behaviours of P are preserved
by P

0.
Our setting is sequential programs defined by the basic program constructs:

sequential composition, assignment, branching and loops, and also both demonic
nondeterminism (u ), and probabilistic choice ( p� ). There are few works on the
combination of probability and nondeterminism for datatypes [27]; in the next
section we review some known results with an example.

Definition 2. A datatype (I,OP, F ) is refined by (I 0,OP
0
, F

0) [12] if, for every
program P expressible using the constructs mentioned above, including calls on

corresponding operators in OP and OP
0
, we have

I;P(OP );F v I
0;P(OP

0);F 0
,

where “ ;” indicates sequential composition.

There is a wealth of literature on verification methods for proving refinement
of datatypes (Def. 2). A common method is simulation:

Definition 3. We say that an operation rep is a simulation from (I,OP, F ) to
(I 0,OP

0
, F

0) if –using j2J to index corresponding operations in OP and OP
0
–

the following inequations hold [12] :

I; rep v I
0 (1)

OPj ; rep v rep; OP
0
j 8j2J (2)

F v rep;F 0 (3)

In order however for simulation (Def. 3) to establish refinement (Def. 2), an
additional constraint is required, namely that rep must commute even with “in-
termediate” external program constructs lying between calls of the datatype’s
operations, i.e. ones that don’t refer to the datatype at all.

2 Abstract datatypes with probability

Figure 1 depicts two probabilistic datatypes. The left-hand datatype Fig. 1a has a
single operation FlipA which outputs a random value. The right-hand datatype,

3 For example, desired properties of sequential programs are often their termination

and their establishment of a given postcondition on the program state, in both cases
provided a precondition holds. Hoare logic, Dijkstra weakest-preconditions and the
refinement calculus all derive their definition of refinement from that [6,10,16,29,32]



Today’s talk

❖ What happens when some of the behaviour can be probabilistic?

❖ Do the traditional proof methods (eg simulation) still work?

❖ Can we still use the abstract specification to prove properties of programs that use probabilistic 
datatypes?

❖ If they don’t, what must be changed? 

❖ A semantics and refinement that distinguishes hidden and visible state;

❖ Does it apply to our challenge program?

❖ We need to talk about information leaks…
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Abstract (specification) datatype for a coin flip

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

Initialisation

Operation

Finalisation

Probabilistic choice



Programming with the coin datatype

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.

Demonic 
nondeterministic 

choice What is the probability that g=v finally?



Reasoning with the coin datatype

skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.

What is the probability that g=v finally?

1/2 because the flip 
comes after the 
nondeterminism….?

This is what would be 
expected, but can we 

prove it formally? What 
happens when we 

implement the 
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We can reason about the program by using the abstract datatype and Hoare Triples…

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

{ Post Condition}

skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code
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the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.

skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.
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What is the probability that v = g here?
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the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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F # Does it matter?

What is the probability that v = g here?
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the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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F # Does it matter?

What is the probability that v = g here?
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the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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We can reason about the program by using the abstract datatype and pGCL…

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining
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v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
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Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining
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Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

wp.I.[1/2]
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Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.
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Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining
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Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.
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Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining
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Intuitively the answer should be “yes” because, even though the random
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the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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How does all of this work with refinement of 
datatypes?



A refinement example

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

Why should the concrete refine the abstract?



A refinement example

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

The abstract datatype uses a “hidden” variable c to store a pre-flipped 
value — why shouldn’t that matter?



Remember the definition of refinement?

Refinement of datatypes is defined relative to refinement of the programs
that use them; and refinement itself is dependent on the a-priori identification
of (desired) properties those programs should have: in its most general sense
refinement therefore means “preservation of desired properties”. 3 In particular,
if any calling program replacing a datatype (I,OP, F ) by (I 0,OP

0
, F

0) will find
all its desired properties preserved, we say that (I,OP, F ) is itself refined by
(I 0,OP

0
, F

0). We write v for the refinement relation between programs, so
that P v P

0 meaning (as stated above) desired behaviours of P are preserved
by P

0.
Our setting is sequential programs defined by the basic program constructs:

sequential composition, assignment, branching and loops, and also both demonic
nondeterminism (u ), and probabilistic choice ( p� ). There are few works on the
combination of probability and nondeterminism for datatypes [27]; in the next
section we review some known results with an example.

Definition 2. A datatype (I,OP, F ) is refined by (I 0,OP
0
, F

0) [12] if, for every
program P expressible using the constructs mentioned above, including calls on

corresponding operators in OP and OP
0
, we have

I;P(OP );F v I
0;P(OP

0);F 0
,

where “ ;” indicates sequential composition.

There is a wealth of literature on verification methods for proving refinement
of datatypes (Def. 2). A common method is simulation:

Definition 3. We say that an operation rep is a simulation from (I,OP, F ) to
(I 0,OP

0
, F

0) if –using j2J to index corresponding operations in OP and OP
0
–

the following inequations hold [12] :

I; rep v I
0 (1)

OPj ; rep v rep; OP
0
j 8j2J (2)

F v rep;F 0 (3)

In order however for simulation (Def. 3) to establish refinement (Def. 2), an
additional constraint is required, namely that rep must commute even with “in-
termediate” external program constructs lying between calls of the datatype’s
operations, i.e. ones that don’t refer to the datatype at all.

2 Abstract datatypes with probability

Figure 1 depicts two probabilistic datatypes. The left-hand datatype Fig. 1a has a
single operation FlipA which outputs a random value. The right-hand datatype,

3 For example, desired properties of sequential programs are often their termination

and their establishment of a given postcondition on the program state, in both cases
provided a precondition holds. Hoare logic, Dijkstra weakest-preconditions and the
refinement calculus all derive their definition of refinement from that [6,10,16,29,32]

skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.

Demonic nondeterministic 
choice cannot be resolved 

on the basis of internal 
state that it cannot 

“access” or “observe”

In particular whether or 
not there has been a “pre-
flip” of a local variable is 

not available, even at  
“run-time”
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Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining
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function call….
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F # Does it matter?
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(c) User’s code
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Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.
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Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.
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(a) The abstract datatype
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(b) The concrete datatype
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Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining
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Let’s take another look at refinement

Refinement of datatypes is defined relative to refinement of the programs
that use them; and refinement itself is dependent on the a-priori identification
of (desired) properties those programs should have: in its most general sense
refinement therefore means “preservation of desired properties”. 3 In particular,
if any calling program replacing a datatype (I,OP, F ) by (I 0,OP

0
, F

0) will find
all its desired properties preserved, we say that (I,OP, F ) is itself refined by
(I 0,OP

0
, F

0). We write v for the refinement relation between programs, so
that P v P

0 meaning (as stated above) desired behaviours of P are preserved
by P

0.
Our setting is sequential programs defined by the basic program constructs:

sequential composition, assignment, branching and loops, and also both demonic
nondeterminism (u ), and probabilistic choice ( p� ). There are few works on the
combination of probability and nondeterminism for datatypes [27]; in the next
section we review some known results with an example.

Definition 2. A datatype (I,OP, F ) is refined by (I 0,OP
0
, F

0) [12] if, for every
program P expressible using the constructs mentioned above, including calls on

corresponding operators in OP and OP
0
, we have

I;P(OP );F v I
0;P(OP

0);F 0
,

where “ ;” indicates sequential composition.

There is a wealth of literature on verification methods for proving refinement
of datatypes (Def. 2). A common method is simulation:

Definition 3. We say that an operation rep is a simulation from (I,OP, F ) to
(I 0,OP

0
, F

0) if –using j2J to index corresponding operations in OP and OP
0
–

the following inequations hold [12] :

I; rep v I
0 (1)

OPj ; rep v rep; OP
0
j 8j2J (2)

F v rep;F 0 (3)

In order however for simulation (Def. 3) to establish refinement (Def. 2), an
additional constraint is required, namely that rep must commute even with “in-
termediate” external program constructs lying between calls of the datatype’s
operations, i.e. ones that don’t refer to the datatype at all.

2 Abstract datatypes with probability

Figure 1 depicts two probabilistic datatypes. The left-hand datatype Fig. 1a has a
single operation FlipA which outputs a random value. The right-hand datatype,

3 For example, desired properties of sequential programs are often their termination

and their establishment of a given postcondition on the program state, in both cases
provided a precondition holds. Hoare logic, Dijkstra weakest-preconditions and the
refinement calculus all derive their definition of refinement from that [6,10,16,29,32]

The observed  behaviour of datatypes makes an (unarticulated 
assumption) that the calling program has “no access” to the run-time 

internals of the datatype. This doesn’t matter when there is no 
probability, but, as we’ve seen does when probability is involved.
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the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.

Simulation should be consistent with a 
copy rule, using a semantics that reflects 

the operational assumptions. 



We can “simulate” concrete behaviours with abstract ones

Refinement of datatypes is defined relative to refinement of the programs
that use them; and refinement itself is dependent on the a-priori identification
of (desired) properties those programs should have: in its most general sense
refinement therefore means “preservation of desired properties”. 3 In particular,
if any calling program replacing a datatype (I,OP, F ) by (I 0,OP

0
, F

0) will find
all its desired properties preserved, we say that (I,OP, F ) is itself refined by
(I 0,OP

0
, F

0). We write v for the refinement relation between programs, so
that P v P

0 meaning (as stated above) desired behaviours of P are preserved
by P

0.
Our setting is sequential programs defined by the basic program constructs:

sequential composition, assignment, branching and loops, and also both demonic
nondeterminism (u ), and probabilistic choice ( p� ). There are few works on the
combination of probability and nondeterminism for datatypes [27]; in the next
section we review some known results with an example.

Definition 2. A datatype (I,OP, F ) is refined by (I 0,OP
0
, F

0) [12] if, for every
program P expressible using the constructs mentioned above, including calls on

corresponding operators in OP and OP
0
, we have

I;P(OP );F v I
0;P(OP

0);F 0
,

where “ ;” indicates sequential composition.

There is a wealth of literature on verification methods for proving refinement
of datatypes (Def. 2). A common method is simulation:

Definition 3. We say that an operation rep is a simulation from (I,OP, F ) to
(I 0,OP

0
, F

0) if –using j2J to index corresponding operations in OP and OP
0
–

the following inequations hold [12] :

I; rep v I
0 (1)

OPj ; rep v rep; OP
0
j 8j2J (2)

F v rep;F 0 (3)

In order however for simulation (Def. 3) to establish refinement (Def. 2), an
additional constraint is required, namely that rep must commute even with “in-
termediate” external program constructs lying between calls of the datatype’s
operations, i.e. ones that don’t refer to the datatype at all.

2 Abstract datatypes with probability

Figure 1 depicts two probabilistic datatypes. The left-hand datatype Fig. 1a has a
single operation FlipA which outputs a random value. The right-hand datatype,

3 For example, desired properties of sequential programs are often their termination

and their establishment of a given postcondition on the program state, in both cases
provided a precondition holds. Hoare logic, Dijkstra weakest-preconditions and the
refinement calculus all derive their definition of refinement from that [6,10,16,29,32]

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

<latexit sha1_base64="+zls9UMi0Ba3DkesuUxid5guqdQ=">AAACDnicbVA9SwNBEN3zM8avqKXNYghYxbsQVAJC0CZlhHxBEo69zSZZsne37M4J4bhfYONfsbFQxNbazn/jJrlCEx8MPN6bYWaeJwXXYNvf1tr6xubWdmYnu7u3f3CYOzpu6TBSlDVpKELV8YhmggesCRwE60jFiO8J1vYmdzO//cCU5mHQgKlkfZ+MAj7klICR3Fwh7gFgxWQFY1q5wTXcC6WItBs7F6VkLjUS7ObydtGeA68SJyV5lKLu5r56g5BGPguACqJ117El9GOigFPBkmwv0kwSOiEj1jU0ID7T/Xj+ToILRhngYahMBYDn6u+JmPhaT33PdPoExnrZm4n/ed0Ihtf9mAcyAhbQxaJhJDCEeJYNHnDFKIipIYQqbm7FdEwUoWASzJoQnOWXV0mrVHQui+X7cr56m8aRQafoDJ0jB12hKqqhOmoiih7RM3pFb9aT9WK9Wx+L1jUrnTlBf2B9/gAx2pmr</latexit>

rep : c := H�1/2 c := T
<latexit sha1_base64="SiEdf2TepQEq/XxM/virCg6sTBE=">AAAB8XicdVDLSgNBEJyNrxhfUY9eBoPgKcwuSUxuQS8eI5gHJiHMTmaTIbOzy0yvEJb8hRcPinj1b7z5N04egooWNBRV3XR3+bEUBgj5cDJr6xubW9nt3M7u3v5B/vCoZaJEM95kkYx0x6eGS6F4EwRI3ok1p6EvedufXM399j3XRkTqFqYx74d0pEQgGAUr3aU9AKx5PMODfIEUvTKpVV1MisTC8ywpE7dWqWB3oRBSQCs0Bvn33jBiScgVMEmN6bokhn5KNQgm+SzXSwyPKZvQEe9aqmjITT9dXDzDZ1YZ4iDSthTghfp9IqWhMdPQt50hhbH57c3Fv7xuAkG1nwoVJ8AVWy4KEokhwvP38VBozkBOLaFMC3srZmOqKQMbUs6G8PUp/p+0vKJbKZZuSoX65SqOLDpBp+gcuegC1dE1aqAmYkihB/SEnh3jPDovzuuyNeOsZo7RDzhvn5ZvkOI=</latexit>

rep

Consistent with 
the MDP copy 

rule…?



How should simulation work?skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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F # Does it matter?

What is the probability that v = g here?
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Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.

<latexit sha1_base64="F/lG/j1H1UKBtpcotDTT/Kb1TqI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94DjhfkQHSoSCUbRSO+sikusJ6ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fja7d0JOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm0+dJX2jOUI4toUwLeythQ6opQxtRyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBAwjO8wpvz6Lw4787HvLXg5DOH8AfO5w9nZI+Q</latexit>

A

<latexit sha1_base64="F/lG/j1H1UKBtpcotDTT/Kb1TqI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94DjhfkQHSoSCUbRSO+sikusJ6ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fja7d0JOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm0+dJX2jOUI4toUwLeythQ6opQxtRyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBAwjO8wpvz6Lw4787HvLXg5DOH8AfO5w9nZI+Q</latexit>

A

<latexit sha1_base64="xsw6DqBhY2UmVbBiflemzBRj+hU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOxF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G9ZnffuLaiFg94CThfkSHSoSCUbRSJ+shkvqU9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5vfOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2fNkIDRnKCeWUKaFvZWwEdWUoY2oZEPwll9eJa2LqndVvby/rNRu8ziKcAKncA4eXEMN7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wdqcI+S</latexit>

C

<latexit sha1_base64="xsw6DqBhY2UmVbBiflemzBRj+hU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOxF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G9ZnffuLaiFg94CThfkSHSoSCUbRSJ+shkvqU9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5vfOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2fNkIDRnKCeWUKaFvZWwEdWUoY2oZEPwll9eJa2LqndVvby/rNRu8ziKcAKncA4eXEMN7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wdqcI+S</latexit>

C

Glue a series of 
little proofs 

together via the 
rep…

v, g

C 
states v, g, 

c

A 
states

<latexit sha1_base64="SiEdf2TepQEq/XxM/virCg6sTBE=">AAAB8XicdVDLSgNBEJyNrxhfUY9eBoPgKcwuSUxuQS8eI5gHJiHMTmaTIbOzy0yvEJb8hRcPinj1b7z5N04egooWNBRV3XR3+bEUBgj5cDJr6xubW9nt3M7u3v5B/vCoZaJEM95kkYx0x6eGS6F4EwRI3ok1p6EvedufXM399j3XRkTqFqYx74d0pEQgGAUr3aU9AKx5PMODfIEUvTKpVV1MisTC8ywpE7dWqWB3oRBSQCs0Bvn33jBiScgVMEmN6bokhn5KNQgm+SzXSwyPKZvQEe9aqmjITT9dXDzDZ1YZ4iDSthTghfp9IqWhMdPQt50hhbH57c3Fv7xuAkG1nwoVJ8AVWy4KEokhwvP38VBozkBOLaFMC3srZmOqKQMbUs6G8PUp/p+0vKJbKZZuSoX65SqOLDpBp+gcuegC1dE1aqAmYkihB/SEnh3jPDovzuuyNeOsZo7RDzhvn5ZvkOI=</latexit>

rep
<latexit sha1_base64="SiEdf2TepQEq/XxM/virCg6sTBE=">AAAB8XicdVDLSgNBEJyNrxhfUY9eBoPgKcwuSUxuQS8eI5gHJiHMTmaTIbOzy0yvEJb8hRcPinj1b7z5N04egooWNBRV3XR3+bEUBgj5cDJr6xubW9nt3M7u3v5B/vCoZaJEM95kkYx0x6eGS6F4EwRI3ok1p6EvedufXM399j3XRkTqFqYx74d0pEQgGAUr3aU9AKx5PMODfIEUvTKpVV1MisTC8ywpE7dWqWB3oRBSQCs0Bvn33jBiScgVMEmN6bokhn5KNQgm+SzXSwyPKZvQEe9aqmjITT9dXDzDZ1YZ4iDSthTghfp9IqWhMdPQt50hhbH57c3Fv7xuAkG1nwoVJ8AVWy4KEokhwvP38VBozkBOLaFMC3srZmOqKQMbUs6G8PUp/p+0vKJbKZZuSoX65SqOLDpBp+gcuegC1dE1aqAmYkihB/SEnh3jPDovzuuyNeOsZo7RDzhvn5ZvkOI=</latexit>

rep



How should simulation work?skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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c := H�1/2 c := T

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining
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next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining
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skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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c := H�1/2 c := T

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining
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C

skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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Glue a series of 

little proofs 
together via the 

rep…

v, g

v, g, 
c



How should simulation work?
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c := H�1/2 c := T

<latexit sha1_base64="u2nFRzRsfwsn2iPI6FBapCrJzQY=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGioogFN10WaEv6Awlk6ZtaOZhcqdQhuLGX3HjQhG3foU7/8Z0OgttPXDh5Jx7yb3HiwRXYFnfRm5ldW19I79Z2Nre2d0z9w+aKowlZQ0ailC2PaKY4AFrAAfB2pFkxPcEa3mju5nfGjOpeBjUYRIx1yeDgPc5JaClrnmUOAB4fH2Dq9hRD5RE6aM+xV2zaJWsFHiZ2Bkpogy1rvnl9EIa+ywAKohSHduKwE2IBE4FmxacWLGI0BEZsI6mAfGZcpP0hCk+1UoP90OpKwCcqr8nEuIrNfE93ekTGKpFbyb+53Vi6F+5CQ+iGFhA5x/1Y4EhxLM8cI9LRkFMNCFUcr0rpkMiCQWdWkGHYC+evEya5yX7olS+Lxcrt1kceXSMTtAZstElqqAqqqEGougRPaNX9GY8GS/Gu/Exb80Z2cwh+gPj8weA1pWU</latexit>

v := H u v := T

<latexit sha1_base64="u2nFRzRsfwsn2iPI6FBapCrJzQY=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGioogFN10WaEv6Awlk6ZtaOZhcqdQhuLGX3HjQhG3foU7/8Z0OgttPXDh5Jx7yb3HiwRXYFnfRm5ldW19I79Z2Nre2d0z9w+aKowlZQ0ailC2PaKY4AFrAAfB2pFkxPcEa3mju5nfGjOpeBjUYRIx1yeDgPc5JaClrnmUOAB4fH2Dq9hRD5RE6aM+xV2zaJWsFHiZ2Bkpogy1rvnl9EIa+ywAKohSHduKwE2IBE4FmxacWLGI0BEZsI6mAfGZcpP0hCk+1UoP90OpKwCcqr8nEuIrNfE93ekTGKpFbyb+53Vi6F+5CQ+iGFhA5x/1Y4EhxLM8cI9LRkFMNCFUcr0rpkMiCQWdWkGHYC+evEya5yX7olS+Lxcrt1kceXSMTtAZstElqqAqqqEGougRPaNX9GY8GS/Gu/Exb80Z2cwh+gPj8weA1pWU</latexit>

v := H u v := T

<latexit sha1_base64="f5dL09yyDP8lkBa4HkQGS9rLbp4=">AAACCHicdZDLSgMxFIYzXmu9jbp0YbAIrmpmaGsrCEU3XVboDTpDyaRpG5q5kGSEMnTpxldx40IRtz6CO9/GTFtBRX8I/HznHHLO70WcSYXQh7G0vLK6tp7ZyG5ube/smnv7LRnGgtAmCXkoOh6WlLOANhVTnHYiQbHvcdr2xtdpvX1LhWRh0FCTiLo+HgZswAhWGvXMo8RRCpKLS1iDThjxWPYS68yezlBjCntmDuXtIqqULYjySMu2tSkiq1IqQWtGEMqBheo9893phyT2aaAIx1J2LRQpN8FCMcLpNOvEkkaYjPGQdrUNsE+lm8wOmcITTfpwEAr9Ar1WSr9PJNiXcuJ7utPHaiR/11L4V60bq0HZTVgQxYoGZP7RIOZQhTBNBfaZoETxiTaYCKZ3hWSEBSZKZ5fVIXxdCv83LTtvlfKFm0KuerWIIwMOwTE4BRY4B1VQA3XQBATcgQfwBJ6Ne+PReDFe561LxmLmAPyQ8fYJu9iX5g==</latexit>

c := H�1/2 c := T

If this little proof 
is valid, it means 
that probability 
distributes with 

non-determinisim

<latexit sha1_base64="f5dL09yyDP8lkBa4HkQGS9rLbp4="></latexit>

c := H�1/2 c := T

<latexit sha1_base64="u2nFRzRsfwsn2iPI6FBapCrJzQY=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGioogFN10WaEv6Awlk6ZtaOZhcqdQhuLGX3HjQhG3foU7/8Z0OgttPXDh5Jx7yb3HiwRXYFnfRm5ldW19I79Z2Nre2d0z9w+aKowlZQ0ailC2PaKY4AFrAAfB2pFkxPcEa3mju5nfGjOpeBjUYRIx1yeDgPc5JaClrnmUOAB4fH2Dq9hRD5RE6aM+xV2zaJWsFHiZ2Bkpogy1rvnl9EIa+ywAKohSHduKwE2IBE4FmxacWLGI0BEZsI6mAfGZcpP0hCk+1UoP90OpKwCcqr8nEuIrNfE93ekTGKpFbyb+53Vi6F+5CQ+iGFhA5x/1Y4EhxLM8cI9LRkFMNCFUcr0rpkMiCQWdWkGHYC+evEya5yX7olS+Lxcrt1kceXSMTtAZstElqqAqqqEGougRPaNX9GY8GS/Gu/Exb80Z2cwh+gPj8weA1pWU</latexit>

v := H u v := T <latexit sha1_base64="f5dL09yyDP8lkBa4HkQGS9rLbp4=">AAACCHicdZDLSgMxFIYzXmu9jbp0YbAIrmpmaGsrCEU3XVboDTpDyaRpG5q5kGSEMnTpxldx40IRtz6CO9/GTFtBRX8I/HznHHLO70WcSYXQh7G0vLK6tp7ZyG5ube/smnv7LRnGgtAmCXkoOh6WlLOANhVTnHYiQbHvcdr2xtdpvX1LhWRh0FCTiLo+HgZswAhWGvXMo8RRCpKLS1iDThjxWPYS68yezlBjCntmDuXtIqqULYjySMu2tSkiq1IqQWtGEMqBheo9893phyT2aaAIx1J2LRQpN8FCMcLpNOvEkkaYjPGQdrUNsE+lm8wOmcITTfpwEAr9Ar1WSr9PJNiXcuJ7utPHaiR/11L4V60bq0HZTVgQxYoGZP7RIOZQhTBNBfaZoETxiTaYCKZ3hWSEBSZKZ5fVIXxdCv83LTtvlfKFm0KuerWIIwMOwTE4BRY4B1VQA3XQBATcgQfwBJ6Ne+PReDFe561LxmLmAPyQ8fYJu9iX5g==</latexit>

c := H�1/2 c := T

<latexit sha1_base64="u2nFRzRsfwsn2iPI6FBapCrJzQY=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGioogFN10WaEv6Awlk6ZtaOZhcqdQhuLGX3HjQhG3foU7/8Z0OgttPXDh5Jx7yb3HiwRXYFnfRm5ldW19I79Z2Nre2d0z9w+aKowlZQ0ailC2PaKY4AFrAAfB2pFkxPcEa3mju5nfGjOpeBjUYRIx1yeDgPc5JaClrnmUOAB4fH2Dq9hRD5RE6aM+xV2zaJWsFHiZ2Bkpogy1rvnl9EIa+ywAKohSHduKwE2IBE4FmxacWLGI0BEZsI6mAfGZcpP0hCk+1UoP90OpKwCcqr8nEuIrNfE93ekTGKpFbyb+53Vi6F+5CQ+iGFhA5x/1Y4EhxLM8cI9LRkFMNCFUcr0rpkMiCQWdWkGHYC+evEya5yX7olS+Lxcrt1kceXSMTtAZstElqqAqqqEGougRPaNX9GY8GS/Gu/Exb80Z2cwh+gPj8weA1pWU</latexit>

v := H u v := T

<latexit sha1_base64="DNzVsf1icsHI5AH13zPUjZ7y4Q4=">AAAB+3icdVDLSgNBEJyNrxhfazx6GQyCpzAbYtRb0IvHCEYD2SXMTjpxcPbhTK8YlvyKFw+KePVHvPk3TmIEFS1oKKq66e4KUyUNMvbuFObmFxaXisulldW19Q13s3xhkkwLaItEJboTcgNKxtBGiQo6qQYehQouw+uTiX95C9rIJD7HUQpBxIexHEjB0Uo9t5z7iNQ3NyYLDSDcjGnPrbBqbZ8dHXqUVZlFrWbJPvOOGg3qTRXGKmSGVs998/uJyCKIUShuTNdjKQY51yiFgnHJzwykXFzzIXQtjXkEJsint4/prlX6dJBoWzHSqfp9IueRMaMotJ0Rxyvz25uIf3ndDAeHQS7jNEOIxeeiQaYoJnQSBO1LDQLVyBIutLS3UnHFNRdo4yrZEL4+pf+Ti1rVa1TrZ/VK83gWR5Fskx2yRzxyQJrklLRImwhyR+7JI3lyxs6D8+y8fLYWnNnMFvkB5/UDh5+UyA==</latexit>v
But this in NOT valid using an MDP semantics for probability, which 

does not distinguish hidden statements, i.e. c



How should simulation work?skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.

<latexit sha1_base64="u2nFRzRsfwsn2iPI6FBapCrJzQY=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGioogFN10WaEv6Awlk6ZtaOZhcqdQhuLGX3HjQhG3foU7/8Z0OgttPXDh5Jx7yb3HiwRXYFnfRm5ldW19I79Z2Nre2d0z9w+aKowlZQ0ailC2PaKY4AFrAAfB2pFkxPcEa3mju5nfGjOpeBjUYRIx1yeDgPc5JaClrnmUOAB4fH2Dq9hRD5RE6aM+xV2zaJWsFHiZ2Bkpogy1rvnl9EIa+ywAKohSHduKwE2IBE4FmxacWLGI0BEZsI6mAfGZcpP0hCk+1UoP90OpKwCcqr8nEuIrNfE93ekTGKpFbyb+53Vi6F+5CQ+iGFhA5x/1Y4EhxLM8cI9LRkFMNCFUcr0rpkMiCQWdWkGHYC+evEya5yX7olS+Lxcrt1kceXSMTtAZstElqqAqqqEGougRPaNX9GY8GS/Gu/Exb80Z2cwh+gPj8weA1pWU</latexit>

v := H u v := T

<latexit sha1_base64="u2nFRzRsfwsn2iPI6FBapCrJzQY=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGioogFN10WaEv6Awlk6ZtaOZhcqdQhuLGX3HjQhG3foU7/8Z0OgttPXDh5Jx7yb3HiwRXYFnfRm5ldW19I79Z2Nre2d0z9w+aKowlZQ0ailC2PaKY4AFrAAfB2pFkxPcEa3mju5nfGjOpeBjUYRIx1yeDgPc5JaClrnmUOAB4fH2Dq9hRD5RE6aM+xV2zaJWsFHiZ2Bkpogy1rvnl9EIa+ywAKohSHduKwE2IBE4FmxacWLGI0BEZsI6mAfGZcpP0hCk+1UoP90OpKwCcqr8nEuIrNfE93ekTGKpFbyb+53Vi6F+5CQ+iGFhA5x/1Y4EhxLM8cI9LRkFMNCFUcr0rpkMiCQWdWkGHYC+evEya5yX7olS+Lxcrt1kceXSMTtAZstElqqAqqqEGougRPaNX9GY8GS/Gu/Exb80Z2cwh+gPj8weA1pWU</latexit>

v := H u v := T

<latexit sha1_base64="f5dL09yyDP8lkBa4HkQGS9rLbp4="></latexit>

c := H�1/2 c := T

<latexit sha1_base64="wrJ1MXHGsCCM36GcxdAe98jSjI4=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9RL3qLYB6YLGF2MkmGzM4uM71CWPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3Uz95hPXRkTqAccx90M6UKIvGEUrPaYdRHLXvZqQbrHklt0ZyDLxMlKCDLVu8avTi1gScoVMUmPanhujn1KNgkk+KXQSw2PKRnTA25YqGnLjp7OLJ+TEKj3Sj7QthWSm/p5IaWjMOAxsZ0hxaBa9qfif106wf+mnQsUJcsXmi/qJJBiR6fukJzRnKMeWUKaFvZWwIdWUoQ2pYEPwFl9eJo2zsndertxXStXrLI48HMExnIIHF1CFW6hBHRgoeIZXeHOM8+K8Ox/z1pyTzRzCHzifP7X4kEw=</latexit>

IA

<latexit sha1_base64="sH20S9sTAAQxgVV2QpVmOhIrhk4=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI/BXPQWwTwwWcLsZJIMmZ1dZnqFsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwrs381hPXRkTqAScx90M6VGIgGEUrPaZdRHLXq01Jr1hyy+4cZJV4GSlBhnqv+NXtRywJuUImqTEdz43RT6lGwSSfFrqJ4TFlYzrkHUsVDbnx0/nFU3JmlT4ZRNqWQjJXf0+kNDRmEga2M6Q4MsveTPzP6yQ4uPZToeIEuWKLRYNEEozI7H3SF5ozlBNLKNPC3krYiGrK0IZUsCF4yy+vkuZF2bssV+4rpepNFkceTuAUzsGDK6jCLdShAQwUPMMrvDnGeXHenY9Fa87JZo7hD5zPH7kEkE4=</latexit>

IC

<latexit sha1_base64="f5dL09yyDP8lkBa4HkQGS9rLbp4="></latexit>

c := H�1/2 c := T

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

<latexit sha1_base64="EVVo/DgAt604615F77NBuNIUeQ8=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI/BgHiMYB6YLGF2MkmGzM4uM71CWPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dQSyFQdf9dnJr6xubW/ntws7u3v5B8fCoaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY12Z+64lrIyL1gJOY+yEdKjEQjKKVHtMuIrnt1aakVyy5ZXcOskq8jJQgQ71X/Or2I5aEXCGT1JiO58bop1SjYJJPC93E8JiyMR3yjqWKhtz46fziKTmzSp8MIm1LIZmrvydSGhozCQPbGVIcmWVvJv7ndRIcXPupUHGCXLHFokEiCUZk9j7pC80ZyokllGlhbyVsRDVlaEMq2BC85ZdXSfOi7F2WK/eVUvUmiyMPJ3AK5+DBFVThDurQAAYKnuEV3hzjvDjvzseiNedkM8fwB87nD7RskEs=</latexit>

FC

<latexit sha1_base64="P/wViydOIoiNlbXrKOBJOFEXT78=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9RQTxGMA9MljA7mSRDZmeXmV4hLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyL1gOOY+yEdKNEXjKKVHtMOIrntXk1It1hyy+4MZJl4GSlBhlq3+NXpRSwJuUImqTFtz43RT6lGwSSfFDqJ4TFlIzrgbUsVDbnx09nFE3JilR7pR9qWQjJTf0+kNDRmHAa2M6Q4NIveVPzPayfYv/RToeIEuWLzRf1EEozI9H3SE5ozlGNLKNPC3krYkGrK0IZUsCF4iy8vk8ZZ2TsvV+4rpep1FkcejuAYTsGDC6jCHdSgDgwUPMMrvDnGeXHenY95a87JZg7hD5zPH7FgkEk=</latexit>

FA

<latexit sha1_base64="F/lG/j1H1UKBtpcotDTT/Kb1TqI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94DjhfkQHSoSCUbRSO+sikusJ6ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fja7d0JOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm0+dJX2jOUI4toUwLeythQ6opQxtRyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBAwjO8wpvz6Lw4787HvLXg5DOH8AfO5w9nZI+Q</latexit>

A

<latexit sha1_base64="xsw6DqBhY2UmVbBiflemzBRj+hU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOxF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G9ZnffuLaiFg94CThfkSHSoSCUbRSJ+shkvqU9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5vfOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2fNkIDRnKCeWUKaFvZWwEdWUoY2oZEPwll9eJa2LqndVvby/rNRu8ziKcAKncA4eXEMN7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wdqcI+S</latexit>

C

skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.

<latexit sha1_base64="F/lG/j1H1UKBtpcotDTT/Kb1TqI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94DjhfkQHSoSCUbRSO+sikusJ6ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fja7d0JOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm0+dJX2jOUI4toUwLeythQ6opQxtRyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBAwjO8wpvz6Lw4787HvLXg5DOH8AfO5w9nZI+Q</latexit>

A

<latexit sha1_base64="F/lG/j1H1UKBtpcotDTT/Kb1TqI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94DjhfkQHSoSCUbRSO+sikusJ6ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fja7d0JOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm0+dJX2jOUI4toUwLeythQ6opQxtRyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBAwjO8wpvz6Lw4787HvLXg5DOH8AfO5w9nZI+Q</latexit>

A

<latexit sha1_base64="xsw6DqBhY2UmVbBiflemzBRj+hU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOxF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G9ZnffuLaiFg94CThfkSHSoSCUbRSJ+shkvqU9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5vfOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2fNkIDRnKCeWUKaFvZWwEdWUoY2oZEPwll9eJa2LqndVvby/rNRu8ziKcAKncA4eXEMN7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wdqcI+S</latexit>

C

<latexit sha1_base64="xsw6DqBhY2UmVbBiflemzBRj+hU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOxF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G9ZnffuLaiFg94CThfkSHSoSCUbRSJ+shkvqU9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5vfOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2fNkIDRnKCeWUKaFvZWwEdWUoY2oZEPwll9eJa2LqndVvby/rNRu8ziKcAKncA4eXEMN7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wdqcI+S</latexit>

C

<latexit sha1_base64="DNzVsf1icsHI5AH13zPUjZ7y4Q4=">AAAB+3icdVDLSgNBEJyNrxhfazx6GQyCpzAbYtRb0IvHCEYD2SXMTjpxcPbhTK8YlvyKFw+KePVHvPk3TmIEFS1oKKq66e4KUyUNMvbuFObmFxaXisulldW19Q13s3xhkkwLaItEJboTcgNKxtBGiQo6qQYehQouw+uTiX95C9rIJD7HUQpBxIexHEjB0Uo9t5z7iNQ3NyYLDSDcjGnPrbBqbZ8dHXqUVZlFrWbJPvOOGg3qTRXGKmSGVs998/uJyCKIUShuTNdjKQY51yiFgnHJzwykXFzzIXQtjXkEJsint4/prlX6dJBoWzHSqfp9IueRMaMotJ0Rxyvz25uIf3ndDAeHQS7jNEOIxeeiQaYoJnQSBO1LDQLVyBIutLS3UnHFNRdo4yrZEL4+pf+Ti1rVa1TrZ/VK83gWR5Fskx2yRzxyQJrklLRImwhyR+7JI3lyxs6D8+y8fLYWnNnMFvkB5/UDh5+UyA==</latexit>v
This is not a valid 

proof of 
refinement with 
hidden state and 

probability…

?



What do we learn from this?

Refinement of datatypes is defined relative to refinement of the programs
that use them; and refinement itself is dependent on the a-priori identification
of (desired) properties those programs should have: in its most general sense
refinement therefore means “preservation of desired properties”. 3 In particular,
if any calling program replacing a datatype (I,OP, F ) by (I 0,OP

0
, F

0) will find
all its desired properties preserved, we say that (I,OP, F ) is itself refined by
(I 0,OP

0
, F

0). We write v for the refinement relation between programs, so
that P v P

0 meaning (as stated above) desired behaviours of P are preserved
by P

0.
Our setting is sequential programs defined by the basic program constructs:

sequential composition, assignment, branching and loops, and also both demonic
nondeterminism (u ), and probabilistic choice ( p� ). There are few works on the
combination of probability and nondeterminism for datatypes [27]; in the next
section we review some known results with an example.

Definition 2. A datatype (I,OP, F ) is refined by (I 0,OP
0
, F

0) [12] if, for every
program P expressible using the constructs mentioned above, including calls on

corresponding operators in OP and OP
0
, we have

I;P(OP );F v I
0;P(OP

0);F 0
,

where “ ;” indicates sequential composition.

There is a wealth of literature on verification methods for proving refinement
of datatypes (Def. 2). A common method is simulation:

Definition 3. We say that an operation rep is a simulation from (I,OP, F ) to
(I 0,OP

0
, F

0) if –using j2J to index corresponding operations in OP and OP
0
–

the following inequations hold [12] :

I; rep v I
0 (1)

OPj ; rep v rep; OP
0
j 8j2J (2)

F v rep;F 0 (3)

In order however for simulation (Def. 3) to establish refinement (Def. 2), an
additional constraint is required, namely that rep must commute even with “in-
termediate” external program constructs lying between calls of the datatype’s
operations, i.e. ones that don’t refer to the datatype at all.

2 Abstract datatypes with probability

Figure 1 depicts two probabilistic datatypes. The left-hand datatype Fig. 1a has a
single operation FlipA which outputs a random value. The right-hand datatype,

3 For example, desired properties of sequential programs are often their termination

and their establishment of a given postcondition on the program state, in both cases
provided a precondition holds. Hoare logic, Dijkstra weakest-preconditions and the
refinement calculus all derive their definition of refinement from that [6,10,16,29,32]

skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.

Demonic nondeterministic 
choice cannot be resolved 

on the basis of internal 
state that it cannot 

“access” or “observe”

MDP’s do not support a copy rule 
that distinguishes hidden (c state) 

from observed state.



What is the right semantics for probabilistic datatypes so 
that internal state is “invisible” to external nondeterminism?

Partially Observable 
Hidden Markov 

Models!



MDP versus POMDP’s

The abstract datatype has a visible coin to flip; the concrete datatype 
has a hidden c to flip

<latexit sha1_base64="nmkH9uwQhFoDGDL78VhH2OObWR8=">AAACE3icbVDLSgMxFM3UV62vqks30SKIizpTioogFN10WaEv6Awlk6ZtaCYZkoxQhvYb3Pgrblwo4taNO//GTDsLrR64cDjnXu69xw8ZVdq2v6zM0vLK6lp2PbexubW9k9/dayoRSUwaWDAh2z5ShFFOGppqRtqhJCjwGWn5o9vEb90TqajgdT0OiRegAad9ipE2Ujd/GrtaQywov7qG1ekUdmPnrDRxD10RskgZIfXqk26+YBftGeBf4qSkAFLUuvlPtydwFBCuMUNKdRw71F6MpKaYkUnOjRQJER6hAekYylFAlBfPfprAY6P0YF9IUzy50Kg/J2IUKDUOfNMZID1Ui14i/ud1It2/9GLKw0gTjueL+hGDWsAkINijkmDNxoYgLKm5FeIhkghrE2POhOAsvvyXNEtF57xYvisXKjdpHFlwAI7ACXDABaiAKqiBBsDgATyBF/BqPVrP1pv1Pm/NWOnMPvgF6+Mb/iSc/Q==</latexit>

coin := H 1/2� coin := T

MDP

<latexit sha1_base64="wqghnpz4s+r+R4Ix+B1gmmN4Gkk=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VwFRIp6rKoC5cV7AOaUCbTSTt0MgkzE6WE9Cvc+CtuXCjiVnf+jZM2grYeGDhzzr3ce48fMyqVbX8ZpaXlldW18nplY3Nre8fc3WvJKBGYNHHEItHxkSSMctJUVDHSiQVBoc9I2x9d5n77jghJI36rxjHxQjTgNKAYKS31TCt1MWKwlcHJxBV0MFRIiOhe/2DqhkgNfR9eZfCnqmdWbcueAi4SpyBVUKDRMz/dfoSTkHCFGZKy69ix8lIkFMWMZBU3kSRGeIQGpKspRyGRXjq9K4NHWunDIBL6cQWn6u+OFIVSjkNfV+arynkvF//zuokKzr2U8jhRhOPZoCBhUEUwDwn2qSBYsbEmCAuqd4V4iATCSkdZ0SE48ycvktaJ5ZxatZtatX5RxFEGB+AQHAMHnIE6uAYN0AQYPIAn8AJejUfj2Xgz3melJaPo2Qd/YHx8A9cwn7c=</latexit>V ! DV

<latexit sha1_base64="WPD1x4cTaMjgAfT38yKwxKuNuPU="></latexit>

c := H 1/2� T

POMDP

<latexit sha1_base64="jtfpgm5zzyZt0kGpKb5/bNv1ulk="></latexit>

V ⇥ DH ! D(V ⇥ DH)
<latexit sha1_base64="APFOuFtHwQUSaoop2n7k2HlbgZA=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJaa7srunFZwT5gOpRMmmlDM8mQZIQy9DPcuFDErV/jzr8x01ZQ0QMhh3Pv5Z57woQzbRD6cAorq2vrG8XN0tb2zu5eef+go2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtOrvN6954qzaS4M9OEBjEeCRYxgo2V/KwfYzMOQ9iaDcoV5NaRxTlEbtX+9ZoljUYDnV9Az0VzVMASrUH5vT+UJI2pMIRjrX0PJSbIsDKMcDor9VNNE0wmeER9SwWOqQ6yueUZPLHKEEZS2ScMnKvfJzIcaz2NQ9uZO9S/a7n4V81PTVQPMiaS1FBBFouilEMjYX4/HDJFieFTSzBRzHqFZIwVJsamVLIhfF0K/yedM9erudXbaqV5tYyjCI7AMTgFHrgETXADWqANCJDgATyBZ8c4j86L87poLTjLmUPwA87bJ3K7kWM=</latexit>P <latexit sha1_base64="APFOuFtHwQUSaoop2n7k2HlbgZA=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJaa7srunFZwT5gOpRMmmlDM8mQZIQy9DPcuFDErV/jzr8x01ZQ0QMhh3Pv5Z57woQzbRD6cAorq2vrG8XN0tb2zu5eef+go2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtOrvN6954qzaS4M9OEBjEeCRYxgo2V/KwfYzMOQ9iaDcoV5NaRxTlEbtX+9ZoljUYDnV9Az0VzVMASrUH5vT+UJI2pMIRjrX0PJSbIsDKMcDor9VNNE0wmeER9SwWOqQ6yueUZPLHKEEZS2ScMnKvfJzIcaz2NQ9uZO9S/a7n4V81PTVQPMiaS1FBBFouilEMjYX4/HDJFieFTSzBRzHqFZIwVJsamVLIhfF0K/yedM9erudXbaqV5tYyjCI7AMTgFHrgETXADWqANCJDgATyBZ8c4j86L87poLTjLmUPwA87bJ3K7kWM=</latexit>P



MDP versus POMDP’s

External nondeterminism cannot “observe” hidden coin flips inside 
the module

<latexit sha1_base64="nmkH9uwQhFoDGDL78VhH2OObWR8=">AAACE3icbVDLSgMxFM3UV62vqks30SKIizpTioogFN10WaEv6Awlk6ZtaCYZkoxQhvYb3Pgrblwo4taNO//GTDsLrR64cDjnXu69xw8ZVdq2v6zM0vLK6lp2PbexubW9k9/dayoRSUwaWDAh2z5ShFFOGppqRtqhJCjwGWn5o9vEb90TqajgdT0OiRegAad9ipE2Ujd/GrtaQywov7qG1ekUdmPnrDRxD10RskgZIfXqk26+YBftGeBf4qSkAFLUuvlPtydwFBCuMUNKdRw71F6MpKaYkUnOjRQJER6hAekYylFAlBfPfprAY6P0YF9IUzy50Kg/J2IUKDUOfNMZID1Ui14i/ud1It2/9GLKw0gTjueL+hGDWsAkINijkmDNxoYgLKm5FeIhkghrE2POhOAsvvyXNEtF57xYvisXKjdpHFlwAI7ACXDABaiAKqiBBsDgATyBF/BqPVrP1pv1Pm/NWOnMPvgF6+Mb/iSc/Q==</latexit>

coin := H 1/2� coin := T

MDP
<latexit sha1_base64="WPD1x4cTaMjgAfT38yKwxKuNuPU="></latexit>

c := H 1/2� T

POMDP

<latexit sha1_base64="wqghnpz4s+r+R4Ix+B1gmmN4Gkk=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VwFRIp6rKoC5cV7AOaUCbTSTt0MgkzE6WE9Cvc+CtuXCjiVnf+jZM2grYeGDhzzr3ce48fMyqVbX8ZpaXlldW18nplY3Nre8fc3WvJKBGYNHHEItHxkSSMctJUVDHSiQVBoc9I2x9d5n77jghJI36rxjHxQjTgNKAYKS31TCt1MWKwlcHJxBV0MFRIiOhe/2DqhkgNfR9eZfCnqmdWbcueAi4SpyBVUKDRMz/dfoSTkHCFGZKy69ix8lIkFMWMZBU3kSRGeIQGpKspRyGRXjq9K4NHWunDIBL6cQWn6u+OFIVSjkNfV+arynkvF//zuokKzr2U8jhRhOPZoCBhUEUwDwn2qSBYsbEmCAuqd4V4iATCSkdZ0SE48ycvktaJ5ZxatZtatX5RxFEGB+AQHAMHnIE6uAYN0AQYPIAn8AJejUfj2Xgz3melJaPo2Qd/YHx8A9cwn7c=</latexit>V ! DV
<latexit sha1_base64="APFOuFtHwQUSaoop2n7k2HlbgZA=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJaa7srunFZwT5gOpRMmmlDM8mQZIQy9DPcuFDErV/jzr8x01ZQ0QMhh3Pv5Z57woQzbRD6cAorq2vrG8XN0tb2zu5eef+go2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtOrvN6954qzaS4M9OEBjEeCRYxgo2V/KwfYzMOQ9iaDcoV5NaRxTlEbtX+9ZoljUYDnV9Az0VzVMASrUH5vT+UJI2pMIRjrX0PJSbIsDKMcDor9VNNE0wmeER9SwWOqQ6yueUZPLHKEEZS2ScMnKvfJzIcaz2NQ9uZO9S/a7n4V81PTVQPMiaS1FBBFouilEMjYX4/HDJFieFTSzBRzHqFZIwVJsamVLIhfF0K/yedM9erudXbaqV5tYyjCI7AMTgFHrgETXADWqANCJDgATyBZ8c4j86L87poLTjLmUPwA87bJ3K7kWM=</latexit>P

<latexit sha1_base64="jtfpgm5zzyZt0kGpKb5/bNv1ulk="></latexit>

V ⇥ DH ! D(V ⇥ DH)
<latexit sha1_base64="APFOuFtHwQUSaoop2n7k2HlbgZA=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJaa7srunFZwT5gOpRMmmlDM8mQZIQy9DPcuFDErV/jzr8x01ZQ0QMhh3Pv5Z57woQzbRD6cAorq2vrG8XN0tb2zu5eef+go2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtOrvN6954qzaS4M9OEBjEeCRYxgo2V/KwfYzMOQ9iaDcoV5NaRxTlEbtX+9ZoljUYDnV9Az0VzVMASrUH5vT+UJI2pMIRjrX0PJSbIsDKMcDor9VNNE0wmeER9SwWOqQ6yueUZPLHKEEZS2ScMnKvfJzIcaz2NQ9uZO9S/a7n4V81PTVQPMiaS1FBBFouilEMjYX4/HDJFieFTSzBRzHqFZIwVJsamVLIhfF0K/yedM9erudXbaqV5tYyjCI7AMTgFHrgETXADWqANCJDgATyBZ8c4j86L87poLTjLmUPwA87bJ3K7kWM=</latexit>P

<latexit sha1_base64="2GFXOvjzsOUmlJJ8G31jrCbCtBk=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRgEq3AnQUUQgjaWEcwHJCHsbfaSJXt75+5cIBxJYeNfsbFQxNb/YOe/cZNcoYkPBh7vzTAzz4sE1+A431ZmaXlldS27ntvY3NresXf3qjqMFWUVGopQ1T2imeCSVYCDYPVIMRJ4gtW8/s3Erw2Y0jyU9zCMWCsgXcl9TgkYqW0fJk0APLi8wg4ej5v6gZJoPJ4K7qht552CMwVeJG5K8ihFuW1/NTshjQMmgQqidcN1ImglRAGngo1yzViziNA+6bKGoZIETLeS6RcjfGyUDvZDZUoCnqq/JxISaD0MPNMZEOjpeW8i/uc1YvAvWgmXUQxM0tkiPxYYQjyJBHe4YhTE0BBCFTe3YtojilAwweVMCO78y4ukelpwzwrFu2K+dJ3GkUUH6AidIBedoxK6RWVUQRQ9omf0it6sJ+vFerc+Zq0ZK53ZR39gff4AgdmXTw==</latexit>

v := 0 u v := 1
<latexit sha1_base64="2GFXOvjzsOUmlJJ8G31jrCbCtBk=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRgEq3AnQUUQgjaWEcwHJCHsbfaSJXt75+5cIBxJYeNfsbFQxNb/YOe/cZNcoYkPBh7vzTAzz4sE1+A431ZmaXlldS27ntvY3NresXf3qjqMFWUVGopQ1T2imeCSVYCDYPVIMRJ4gtW8/s3Erw2Y0jyU9zCMWCsgXcl9TgkYqW0fJk0APLi8wg4ej5v6gZJoPJ4K7qht552CMwVeJG5K8ihFuW1/NTshjQMmgQqidcN1ImglRAGngo1yzViziNA+6bKGoZIETLeS6RcjfGyUDvZDZUoCnqq/JxISaD0MPNMZEOjpeW8i/uc1YvAvWgmXUQxM0tkiPxYYQjyJBHe4YhTE0BBCFTe3YtojilAwweVMCO78y4ukelpwzwrFu2K+dJ3GkUUH6AidIBedoxK6RWVUQRQ9omf0it6sJ+vFerc+Zq0ZK53ZR39gff4AgdmXTw==</latexit>

v := 0 u v := 1



MDP versus POMDP’s

External nondeterminism cannot “observe” hidden coin flips inside 
the module

<latexit sha1_base64="nmkH9uwQhFoDGDL78VhH2OObWR8=">AAACE3icbVDLSgMxFM3UV62vqks30SKIizpTioogFN10WaEv6Awlk6ZtaCYZkoxQhvYb3Pgrblwo4taNO//GTDsLrR64cDjnXu69xw8ZVdq2v6zM0vLK6lp2PbexubW9k9/dayoRSUwaWDAh2z5ShFFOGppqRtqhJCjwGWn5o9vEb90TqajgdT0OiRegAad9ipE2Ujd/GrtaQywov7qG1ekUdmPnrDRxD10RskgZIfXqk26+YBftGeBf4qSkAFLUuvlPtydwFBCuMUNKdRw71F6MpKaYkUnOjRQJER6hAekYylFAlBfPfprAY6P0YF9IUzy50Kg/J2IUKDUOfNMZID1Ui14i/ud1It2/9GLKw0gTjueL+hGDWsAkINijkmDNxoYgLKm5FeIhkghrE2POhOAsvvyXNEtF57xYvisXKjdpHFlwAI7ACXDABaiAKqiBBsDgATyBF/BqPVrP1pv1Pm/NWOnMPvgF6+Mb/iSc/Q==</latexit>

coin := H 1/2� coin := T

MDP

<latexit sha1_base64="WPD1x4cTaMjgAfT38yKwxKuNuPU="></latexit>

c := H 1/2� T

POMDP

<latexit sha1_base64="wqghnpz4s+r+R4Ix+B1gmmN4Gkk=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VwFRIp6rKoC5cV7AOaUCbTSTt0MgkzE6WE9Cvc+CtuXCjiVnf+jZM2grYeGDhzzr3ce48fMyqVbX8ZpaXlldW18nplY3Nre8fc3WvJKBGYNHHEItHxkSSMctJUVDHSiQVBoc9I2x9d5n77jghJI36rxjHxQjTgNKAYKS31TCt1MWKwlcHJxBV0MFRIiOhe/2DqhkgNfR9eZfCnqmdWbcueAi4SpyBVUKDRMz/dfoSTkHCFGZKy69ix8lIkFMWMZBU3kSRGeIQGpKspRyGRXjq9K4NHWunDIBL6cQWn6u+OFIVSjkNfV+arynkvF//zuokKzr2U8jhRhOPZoCBhUEUwDwn2qSBYsbEmCAuqd4V4iATCSkdZ0SE48ycvktaJ5ZxatZtatX5RxFEGB+AQHAMHnIE6uAYN0AQYPIAn8AJejUfj2Xgz3melJaPo2Qd/YHx8A9cwn7c=</latexit>V ! DV
<latexit sha1_base64="APFOuFtHwQUSaoop2n7k2HlbgZA=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJaa7srunFZwT5gOpRMmmlDM8mQZIQy9DPcuFDErV/jzr8x01ZQ0QMhh3Pv5Z57woQzbRD6cAorq2vrG8XN0tb2zu5eef+go2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtOrvN6954qzaS4M9OEBjEeCRYxgo2V/KwfYzMOQ9iaDcoV5NaRxTlEbtX+9ZoljUYDnV9Az0VzVMASrUH5vT+UJI2pMIRjrX0PJSbIsDKMcDor9VNNE0wmeER9SwWOqQ6yueUZPLHKEEZS2ScMnKvfJzIcaz2NQ9uZO9S/a7n4V81PTVQPMiaS1FBBFouilEMjYX4/HDJFieFTSzBRzHqFZIwVJsamVLIhfF0K/yedM9erudXbaqV5tYyjCI7AMTgFHrgETXADWqANCJDgATyBZ8c4j86L87poLTjLmUPwA87bJ3K7kWM=</latexit>P

<latexit sha1_base64="jtfpgm5zzyZt0kGpKb5/bNv1ulk="></latexit>

V ⇥ DH ! D(V ⇥ DH)
<latexit sha1_base64="APFOuFtHwQUSaoop2n7k2HlbgZA=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJaa7srunFZwT5gOpRMmmlDM8mQZIQy9DPcuFDErV/jzr8x01ZQ0QMhh3Pv5Z57woQzbRD6cAorq2vrG8XN0tb2zu5eef+go2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtOrvN6954qzaS4M9OEBjEeCRYxgo2V/KwfYzMOQ9iaDcoV5NaRxTlEbtX+9ZoljUYDnV9Az0VzVMASrUH5vT+UJI2pMIRjrX0PJSbIsDKMcDor9VNNE0wmeER9SwWOqQ6yueUZPLHKEEZS2ScMnKvfJzIcaz2NQ9uZO9S/a7n4V81PTVQPMiaS1FBBFouilEMjYX4/HDJFieFTSzBRzHqFZIwVJsamVLIhfF0K/yedM9erudXbaqV5tYyjCI7AMTgFHrgETXADWqANCJDgATyBZ8c4j86L87poLTjLmUPwA87bJ3K7kWM=</latexit>P

<latexit sha1_base64="2GFXOvjzsOUmlJJ8G31jrCbCtBk=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRgEq3AnQUUQgjaWEcwHJCHsbfaSJXt75+5cIBxJYeNfsbFQxNb/YOe/cZNcoYkPBh7vzTAzz4sE1+A431ZmaXlldS27ntvY3NresXf3qjqMFWUVGopQ1T2imeCSVYCDYPVIMRJ4gtW8/s3Erw2Y0jyU9zCMWCsgXcl9TgkYqW0fJk0APLi8wg4ej5v6gZJoPJ4K7qht552CMwVeJG5K8ihFuW1/NTshjQMmgQqidcN1ImglRAGngo1yzViziNA+6bKGoZIETLeS6RcjfGyUDvZDZUoCnqq/JxISaD0MPNMZEOjpeW8i/uc1YvAvWgmXUQxM0tkiPxYYQjyJBHe4YhTE0BBCFTe3YtojilAwweVMCO78y4ukelpwzwrFu2K+dJ3GkUUH6AidIBedoxK6RWVUQRQ9omf0it6sJ+vFerc+Zq0ZK53ZR39gff4AgdmXTw==</latexit>

v := 0 u v := 1

<latexit sha1_base64="2GFXOvjzsOUmlJJ8G31jrCbCtBk=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRgEq3AnQUUQgjaWEcwHJCHsbfaSJXt75+5cIBxJYeNfsbFQxNb/YOe/cZNcoYkPBh7vzTAzz4sE1+A431ZmaXlldS27ntvY3NresXf3qjqMFWUVGopQ1T2imeCSVYCDYPVIMRJ4gtW8/s3Erw2Y0jyU9zCMWCsgXcl9TgkYqW0fJk0APLi8wg4ej5v6gZJoPJ4K7qht552CMwVeJG5K8ihFuW1/NTshjQMmgQqidcN1ImglRAGngo1yzViziNA+6bKGoZIETLeS6RcjfGyUDvZDZUoCnqq/JxISaD0MPNMZEOjpeW8i/uc1YvAvWgmXUQxM0tkiPxYYQjyJBHe4YhTE0BBCFTe3YtojilAwweVMCO78y4ukelpwzwrFu2K+dJ3GkUUH6AidIBedoxK6RWVUQRQ9omf0it6sJ+vFerc+Zq0ZK53ZR39gff4AgdmXTw==</latexit>

v := 0 u v := 1



MDP versus POMDP’s

External nondeterminism 
cannot “observe” hidden coin 

flips inside the module

MDP

POMDP

<latexit sha1_base64="wqghnpz4s+r+R4Ix+B1gmmN4Gkk=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VwFRIp6rKoC5cV7AOaUCbTSTt0MgkzE6WE9Cvc+CtuXCjiVnf+jZM2grYeGDhzzr3ce48fMyqVbX8ZpaXlldW18nplY3Nre8fc3WvJKBGYNHHEItHxkSSMctJUVDHSiQVBoc9I2x9d5n77jghJI36rxjHxQjTgNKAYKS31TCt1MWKwlcHJxBV0MFRIiOhe/2DqhkgNfR9eZfCnqmdWbcueAi4SpyBVUKDRMz/dfoSTkHCFGZKy69ix8lIkFMWMZBU3kSRGeIQGpKspRyGRXjq9K4NHWunDIBL6cQWn6u+OFIVSjkNfV+arynkvF//zuokKzr2U8jhRhOPZoCBhUEUwDwn2qSBYsbEmCAuqd4V4iATCSkdZ0SE48ycvktaJ5ZxatZtatX5RxFEGB+AQHAMHnIE6uAYN0AQYPIAn8AJejUfj2Xgz3melJaPo2Qd/YHx8A9cwn7c=</latexit>V ! DV
<latexit sha1_base64="APFOuFtHwQUSaoop2n7k2HlbgZA=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJaa7srunFZwT5gOpRMmmlDM8mQZIQy9DPcuFDErV/jzr8x01ZQ0QMhh3Pv5Z57woQzbRD6cAorq2vrG8XN0tb2zu5eef+go2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtOrvN6954qzaS4M9OEBjEeCRYxgo2V/KwfYzMOQ9iaDcoV5NaRxTlEbtX+9ZoljUYDnV9Az0VzVMASrUH5vT+UJI2pMIRjrX0PJSbIsDKMcDor9VNNE0wmeER9SwWOqQ6yueUZPLHKEEZS2ScMnKvfJzIcaz2NQ9uZO9S/a7n4V81PTVQPMiaS1FBBFouilEMjYX4/HDJFieFTSzBRzHqFZIwVJsamVLIhfF0K/yedM9erudXbaqV5tYyjCI7AMTgFHrgETXADWqANCJDgATyBZ8c4j86L87poLTjLmUPwA87bJ3K7kWM=</latexit>P

<latexit sha1_base64="jtfpgm5zzyZt0kGpKb5/bNv1ulk="></latexit>

V ⇥ DH ! D(V ⇥ DH)
<latexit sha1_base64="APFOuFtHwQUSaoop2n7k2HlbgZA=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJaa7srunFZwT5gOpRMmmlDM8mQZIQy9DPcuFDErV/jzr8x01ZQ0QMhh3Pv5Z57woQzbRD6cAorq2vrG8XN0tb2zu5eef+go2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtOrvN6954qzaS4M9OEBjEeCRYxgo2V/KwfYzMOQ9iaDcoV5NaRxTlEbtX+9ZoljUYDnV9Az0VzVMASrUH5vT+UJI2pMIRjrX0PJSbIsDKMcDor9VNNE0wmeER9SwWOqQ6yueUZPLHKEEZS2ScMnKvfJzIcaz2NQ9uZO9S/a7n4V81PTVQPMiaS1FBBFouilEMjYX4/HDJFieFTSzBRzHqFZIwVJsamVLIhfF0K/yedM9erudXbaqV5tYyjCI7AMTgFHrgETXADWqANCJDgATyBZ8c4j86L87poLTjLmUPwA87bJ3K7kWM=</latexit>P

<latexit sha1_base64="nmkH9uwQhFoDGDL78VhH2OObWR8=">AAACE3icbVDLSgMxFM3UV62vqks30SKIizpTioogFN10WaEv6Awlk6ZtaCYZkoxQhvYb3Pgrblwo4taNO//GTDsLrR64cDjnXu69xw8ZVdq2v6zM0vLK6lp2PbexubW9k9/dayoRSUwaWDAh2z5ShFFOGppqRtqhJCjwGWn5o9vEb90TqajgdT0OiRegAad9ipE2Ujd/GrtaQywov7qG1ekUdmPnrDRxD10RskgZIfXqk26+YBftGeBf4qSkAFLUuvlPtydwFBCuMUNKdRw71F6MpKaYkUnOjRQJER6hAekYylFAlBfPfprAY6P0YF9IUzy50Kg/J2IUKDUOfNMZID1Ui14i/ud1It2/9GLKw0gTjueL+hGDWsAkINijkmDNxoYgLKm5FeIhkghrE2POhOAsvvyXNEtF57xYvisXKjdpHFlwAI7ACXDABaiAKqiBBsDgATyBF/BqPVrP1pv1Pm/NWOnMPvgF6+Mb/iSc/Q==</latexit>

coin := H 1/2� coin := T

<latexit sha1_base64="2GFXOvjzsOUmlJJ8G31jrCbCtBk=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRgEq3AnQUUQgjaWEcwHJCHsbfaSJXt75+5cIBxJYeNfsbFQxNb/YOe/cZNcoYkPBh7vzTAzz4sE1+A431ZmaXlldS27ntvY3NresXf3qjqMFWUVGopQ1T2imeCSVYCDYPVIMRJ4gtW8/s3Erw2Y0jyU9zCMWCsgXcl9TgkYqW0fJk0APLi8wg4ej5v6gZJoPJ4K7qht552CMwVeJG5K8ihFuW1/NTshjQMmgQqidcN1ImglRAGngo1yzViziNA+6bKGoZIETLeS6RcjfGyUDvZDZUoCnqq/JxISaD0MPNMZEOjpeW8i/uc1YvAvWgmXUQxM0tkiPxYYQjyJBHe4YhTE0BBCFTe3YtojilAwweVMCO78y4ukelpwzwrFu2K+dJ3GkUUH6AidIBedoxK6RWVUQRQ9omf0it6sJ+vFerc+Zq0ZK53ZR39gff4AgdmXTw==</latexit>

v := 0 u v := 1

<latexit sha1_base64="WPD1x4cTaMjgAfT38yKwxKuNuPU="></latexit>

c := H 1/2� T

<latexit sha1_base64="2GFXOvjzsOUmlJJ8G31jrCbCtBk=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRgEq3AnQUUQgjaWEcwHJCHsbfaSJXt75+5cIBxJYeNfsbFQxNb/YOe/cZNcoYkPBh7vzTAzz4sE1+A431ZmaXlldS27ntvY3NresXf3qjqMFWUVGopQ1T2imeCSVYCDYPVIMRJ4gtW8/s3Erw2Y0jyU9zCMWCsgXcl9TgkYqW0fJk0APLi8wg4ej5v6gZJoPJ4K7qht552CMwVeJG5K8ihFuW1/NTshjQMmgQqidcN1ImglRAGngo1yzViziNA+6bKGoZIETLeS6RcjfGyUDvZDZUoCnqq/JxISaD0MPNMZEOjpeW8i/uc1YvAvWgmXUQxM0tkiPxYYQjyJBHe4YhTE0BBCFTe3YtojilAwweVMCO78y4ukelpwzwrFu2K+dJ3GkUUH6AidIBedoxK6RWVUQRQ9omf0it6sJ+vFerc+Zq0ZK53ZR39gff4AgdmXTw==</latexit>

v := 0 u v := 1

{                     }
<latexit sha1_base64="G69RKbJ+bdc5K4L1NzKQhRZeFjY=">AAACFHicbZDLSgMxFIYzXmu9VV26CRZBUMqMFHVTKLrpskJv0BlKJk3b0ExmSM4UytCHcOOruHGhiFsX7nwb03YQbf0h8POdczg5vx8JrsG2v6yV1bX1jc3MVnZ7Z3dvP3dw2NBhrCir01CEquUTzQSXrA4cBGtFipHAF6zpD++m9eaIKc1DWYNxxLyA9CXvcUrAoE7uPHEBcNymIZelCnYFkV08KtkXeEZqP8TxJp1c3i7YM+Fl46Qmj1JVO7lPtxvSOGASqCBatx07Ai8hCjgVbJJ1Y80iQoekz9rGShIw7SWzoyb41JAu7oXKPAl4Rn9PJCTQehz4pjMgMNCLtSn8r9aOoXfjJVxGMTBJ54t6scAQ4mlCuMsVoyDGxhCquPkrpgOiCAWTY9aE4CyevGwalwXnqlC8L+bLt2kcGXSMTtAZctA1KqMKqqI6ougBPaEX9Go9Ws/Wm/U+b12x0pkj9EfWxzfty5zc</latexit>

u[coin = H ^ v = 0, coin = T ^ v = 1]
<latexit sha1_base64="RDHLyyCtDvvzr6qc7m4klaAprbw=">AAACFHicbZDLSgMxFIYzXmu9VV26CRZBUMqMFHVTKLrpskJv0BlKJk3b0ExmSM4UytCHcOOruHGhiFsX7nwb03YQbf0h8POdczg5vx8JrsG2v6yV1bX1jc3MVnZ7Z3dvP3dw2NBhrCir01CEquUTzQSXrA4cBGtFipHAF6zpD++m9eaIKc1DWYNxxLyA9CXvcUrAoE7uPHEBcNymIZelGnYFkV08KtkXeEYqP8TxJp1c3i7YM+Fl46Qmj1JVO7lPtxvSOGASqCBatx07Ai8hCjgVbJJ1Y80iQoekz9rGShIw7SWzoyb41JAu7oXKPAl4Rn9PJCTQehz4pjMgMNCLtSn8r9aOoXfjJVxGMTBJ54t6scAQ4mlCuMsVoyDGxhCquPkrpgOiCAWTY9aE4CyevGwalwXnqlC8L+bLt2kcGXSMTtAZctA1KqMKqqI6ougBPaEX9Go9Ws/Wm/U+b12x0pkj9EfWxzfuo5zc</latexit>

u[coin = T ^ v = 0, coin = H ^ v = 1]
<latexit sha1_base64="BBMfV6egET5nX5atsLRlNLwbM80=">AAACFHicbZDLSgMxFIYzXmu9VV26CRZBUMqMFHVTKLrpskJv0BlKJk3b0ExmSM4UytCHcOOruHGhiFsX7nwb03ZAbf0h8POdczg5vx8JrsG2v6yV1bX1jc3MVnZ7Z3dvP3dw2NBhrCir01CEquUTzQSXrA4cBGtFipHAF6zpD++m9eaIKc1DWYNxxLyA9CXvcUrAoE7uPHEBcNymIZelGnYFkV08KtkXeEYqP8SbdHJ5u2DPhJeNk5o8SlXt5D7dbkjjgEmggmjdduwIvIQo4FSwSdaNNYsIHZI+axsrScC0l8yOmuBTQ7q4FyrzJOAZ/T2RkEDrceCbzoDAQC/WpvC/WjuG3o2XcBnFwCSdL+rFAkOIpwnhLleMghgbQ6ji5q+YDogiFEyOWROCs3jysmlcFpyrQvG+mC/fpnFk0DE6QWfIQdeojCqoiuqIogf0hF7Qq/VoPVtv1vu8dcVKZ47QH1kf3+0dnNs=</latexit>

u[coin = T ^ v = 0, coin = H ^ v = 0]
<latexit sha1_base64="0QT2iyI1h98b5rNK6eZjwjKwABE=">AAACFHicbZDLSgMxFIYzXmu9VV26CRZBUMqMFHVTKLrpskJv0BlKJk3b0ExmSM4UytCHcOOruHGhiFsX7nwb03ZAbf0h8POdczg5vx8JrsG2v6yV1bX1jc3MVnZ7Z3dvP3dw2NBhrCir01CEquUTzQSXrA4cBGtFipHAF6zpD++m9eaIKc1DWYNxxLyA9CXvcUrAoE7uPHEBcNymIZelGnYFkV08KjkXeEYqP8SbdHJ5u2DPhJeNk5o8SlXt5D7dbkjjgEmggmjdduwIvIQo4FSwSdaNNYsIHZI+axsrScC0l8yOmuBTQ7q4FyrzJOAZ/T2RkEDrceCbzoDAQC/WpvC/WjuG3o2XcBnFwCSdL+rFAkOIpwnhLleMghgbQ6ji5q+YDogiFEyOWROCs3jysmlcFpyrQvG+mC/fpnFk0DE6QWfIQdeojCqoiuqIogf0hF7Qq/VoPVtv1vu8dcVKZ47QH1kf3/A7nN0=</latexit>

u[coin = T ^ v = 1, coin = H ^ v = 1]

{                     }
<latexit sha1_base64="0LDKYsoQJDQrYZHIys5wSHO3rmI=">AAACBHicdVA9SwNBEN2L3/Hr1NJmMQgWEvZCErUIiDaWERITSI6wt9kkS/b2jt25QDhS2PhXbCwUsfVH2Plv3MQIKvpg4PHeDDPzglgKA4S8O5mFxaXlldW17PrG5ta2u7N7Y6JEM15nkYx0M6CGS6F4HQRI3ow1p2EgeSMYXk79xohrIyJVg3HM/ZD2legJRsFKHXc/bQPgUYXgtqSqi5MWq9SOMatc+ZOOmyP5QomcnXqY5IlFoWBJiXhn5TL2ZgohOTRHteO+tbsRS0KugElqTMsjMfgp1SCY5JNsOzE8pmxI+7xlqaIhN346e2KCD63Sxb1I21KAZ+r3iZSGxozDwHaGFAbmtzcV//JaCfRO/VSoOAGu2OeiXiIxRHiaCO4KzRnIsSWUaWFvxWxANWVgc8vaEL4+xf+Tm0LeK+eL18Xc+cU8jlW0jw7QEfLQCTpHV6iK6oihW3SPHtGTc+c8OM/Oy2drxpnP7KEfcF4/AI/Plsk=</latexit>

v = 0 ^ u[c = T, c = H]
<latexit sha1_base64="ObePGBrxS3+ZfZfsUoTQnO1j/rM=">AAACBHicdVA9SwNBEN2L3/Hr1NJmMQgWEvZCErUIiDaWERITSI6wt9kkS/b2jt25QDhS2PhXbCwUsfVH2Plv3MQIKvpg4PHeDDPzglgKA4S8O5mFxaXlldW17PrG5ta2u7N7Y6JEM15nkYx0M6CGS6F4HQRI3ow1p2EgeSMYXk79xohrIyJVg3HM/ZD2legJRsFKHXc/bQPgUcXDbUlVFyctVqkdY1a58icdN0fyhRI5O/UwyROLQsGSEvHOymXszRRCcmiOasd9a3cjloRcAZPUmJZHYvBTqkEwySfZdmJ4TNmQ9nnLUkVDbvx09sQEH1qli3uRtqUAz9TvEykNjRmHge0MKQzMb28q/uW1Euid+qlQcQJcsc9FvURiiPA0EdwVmjOQY0so08LeitmAasrA5pa1IXx9iv8nN4W8V84Xr4u584t5HKtoHx2gI+ShE3SOrlAV1RFDt+gePaIn5855cJ6dl8/WjDOf2UM/4Lx+AJFmlso=</latexit>

v = 1 ^ u[c = T, c = H]



Simulation now works in POMDP’s, consistent with copy rule!skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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c := H�1/2 c := T

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining
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C

skip # IA inlined.

v:= Hu T; # Program.

g:= H 1/2� T; # FlipA.

skip # FA inlined.

(a) Inlined abstract encapsulation

c:= H 1/2� T # IC inlined.

v:= Hu T; # Program.

g:= c; c:= H 1/2� T # FlipC.

skip # FC inlined.

(b) Inlined concrete encapsulation

I
v:= Hu T;

g:= Flip() # Is this FlipA, or FlipC ?

F # Does it matter?

What is the probability that v = g here?

(c) User’s code

Fig. 2: Using the copy rule

the operation’s text at its point of call (taking care with variable capture), then
using normal refinement rules on the resulting operation-call -free programs.

It turns out that the exact interpretation of the refinement and program
semantics determines whether or not this verification technique is valid within
a proposed context and set of assumptions, as we now explain.

Consider the user’s program in Fig. 2c that sets a global variable v nondeter-
ministically to H or T, and subsequently sets another global variable g probabilis-
tically via the Flip operation. (That is, neither g nor v are in the encapsulation.)
The program is an example of a context P(·) in Def. 2, and so it is reasonable to
ask whether there are any di↵erences in behaviour between the instantiation of
(I, {Flip}, F ) with either (IA, {FlipA}, FA) or (IC , {FlipC}, FC). Given the
comments above concerning the idea that the internals of the datatype are “not
observable” wrt. the calling program at run-time, one would hope that there is
no di↵erence.

We make this precise by appealing to the Copy Rule; the result appears
in Fig. 2a and Fig. 2b, for the instantiation of respectively (IA, {FlipA}, FA)
versus (IC , {FlipC}, FC). Inlining in the abstract Fig. 2a, the flip is made into
local variable coin but then assigned immediately to the global variable g via
FlipA’s return coin statement. In Fig. 2b however it is the earlier coin flip into
c, carried out during the initialisation IC , that FlipC assigns to g.

If refinement from abstract to concrete does hold, then the probability that v
and g have the same value finally in Fig. 2b should be at least that for Fig. 2a. 4

Suppose now we use an MDP semantics to interpret the program fragments in
Fig. 2a and Fig. 2b.

4 In fact the probabilities will be equal, since the same argument applies to their
having opposite values.
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This little proof is 

now valid! 



What does this mean for these developers?

Fig. 1b, also outputs a random value, when its corresponding operation FlipC
is called — however the two implementations are very di↵erent.

Whereas Fig. 1a flips the coin just when it is needed, Fig. 1b flips the coin
in advance and, after having delivered it, “pre-flips” to be ready for next time.
That is, the initialisation IC sets a local variable c to a random value; then when
FlipC is called, later, it assigns to coin the previously randomly chosen value
c, then immediately “re-flips” c, ready for its next use. And so

the question here is whether the encapsulation, guaranteeing that vari-
able c cannot be accessed or observed by the calling program, su�ces for
datatype (IA, {FlipA}, FA) to be refined by (IC , {FlipC}, FC) accord-
ing to Def. 2, given a definition of refinement that takes the observability
assumption into account.

var coin # Local variable

IA: skip

FlipA: # Flip on demand.

coin:= H

1/2� coin:= T;

return coin

FA: skip

(a) The abstract datatype

var coin,c # Local variables

IC: c:= H 1/2� T # Pre-flip.

FlipC: coin:= c;

c:= H 1/2� T; # Pre-flip.

return coin

FC: skip

(b) The concrete datatype

Fig. 1: Abstract and concrete probabilistic datatypes

Intuitively the answer should be “yes” because, even though the random
setting of c used later to assign to coin has already been resolved after initiali-
sation, there is no way for that resolution to a↵ect the calling program until the
invocation of FlipC , and at that point it is as though coin is set randomly in

exactly the same way as FlipA did. In fact, as shown in [27], the operation rep

given by c:= 0 1/2� 1 satisfies (1)–(3) for the datatypes in Fig. 1a and Fig. 1b.
But is this enough to prove refinement?

As we will see, it is possible to write a program where the two datatypes
seemingly are distinguished when we define refinement using the standard se-
mantics for probabilistic sequential programs (pGCL [26]) based on a Markov
Decision Process Model (MDP) [15, 18, 20, 30]. We discuss that scenario in the
next section.

2.1 The “Copy Rule” for MDP’s and probabilistic datatypes

A well-known technique for establishing the meaning of procedure calls, here
referred to as operations (whether encapsulated or not) is based on a version of
the Copy Rule for the verification of procedures [4,7], which is essentially in-lining

Why should the concrete refine the abstract?

I have to be explicit about the 
local variables and 

ensure that their state is not 
revealed early.



A small cadenza…

• Probabilistic invariants are 
sometimes simulation relations, and

•  
• Refinement depends on run-time 

information leaks concerning about 
the hidden state

Refinement of datatypes is defined relative to refinement of the programs
that use them; and refinement itself is dependent on the a-priori identification
of (desired) properties those programs should have: in its most general sense
refinement therefore means “preservation of desired properties”. 3 In particular,
if any calling program replacing a datatype (I,OP, F ) by (I 0,OP

0
, F

0) will find
all its desired properties preserved, we say that (I,OP, F ) is itself refined by
(I 0,OP

0
, F

0). We write v for the refinement relation between programs, so
that P v P

0 meaning (as stated above) desired behaviours of P are preserved
by P

0.
Our setting is sequential programs defined by the basic program constructs:

sequential composition, assignment, branching and loops, and also both demonic
nondeterminism (u ), and probabilistic choice ( p� ). There are few works on the
combination of probability and nondeterminism for datatypes [27]; in the next
section we review some known results with an example.

Definition 2. A datatype (I,OP, F ) is refined by (I 0,OP
0
, F

0) [12] if, for every
program P expressible using the constructs mentioned above, including calls on

corresponding operators in OP and OP
0
, we have

I;P(OP );F v I
0;P(OP

0);F 0
,

where “ ;” indicates sequential composition.

There is a wealth of literature on verification methods for proving refinement
of datatypes (Def. 2). A common method is simulation:

Definition 3. We say that an operation rep is a simulation from (I,OP, F ) to
(I 0,OP

0
, F

0) if –using j2J to index corresponding operations in OP and OP
0
–

the following inequations hold [12] :

I; rep v I
0 (1)

OPj ; rep v rep; OP
0
j 8j2J (2)

F v rep;F 0 (3)

In order however for simulation (Def. 3) to establish refinement (Def. 2), an
additional constraint is required, namely that rep must commute even with “in-
termediate” external program constructs lying between calls of the datatype’s
operations, i.e. ones that don’t refer to the datatype at all.

2 Abstract datatypes with probability

Figure 1 depicts two probabilistic datatypes. The left-hand datatype Fig. 1a has a
single operation FlipA which outputs a random value. The right-hand datatype,

3 For example, desired properties of sequential programs are often their termination

and their establishment of a given postcondition on the program state, in both cases
provided a precondition holds. Hoare logic, Dijkstra weakest-preconditions and the
refinement calculus all derive their definition of refinement from that [6,10,16,29,32]



How does this work for our challenge problem?

❖ LHS can be fully verified automatically to set c uniformly;

❖ Simulation relations can be verified automatically; they encapsulate 
compactly probabilistic invariant properties, similar to conditional reasoning, 
unlike the {inv} assertion style.

❖ Simulation means that RHS satisfies the properties of LHS.

{ 1/N } # Precondition
var c, v = 0, 1
while(v<N or c�N){

{Inv ⇥ [v<N or c�N]}
2 (v  N) ! v= 2v

c= 2c 1/2� c= 2c+1
2 (v > N) ! v,c= v-N,c-N
{ Inv }

}
{ [c = i] } # Post condition for any 0  i < N

The invariant Inv is a function from the program state to real numbers.
It turns out that, Inv is non-zero with seemingly unrelated probabilities for ap-

proximately N2 values. Give a specific example eg with N = 5. If the invariant

cannot be expressed because it is too complex, this makes the technique of in-
variants unrealistic as an approach for verifying probabilstic programs. What we
need is a better way to formalise and automate abstract reasoning.

Our contributions

1. Basic data-refinement for pGCL for simple variable change using auxiliary
variable method, and implementation in Caesar.

2. Probabilistic auxiliary variables: definition and why we need something more
powerful than a standard coupling invariant.

3. Definition of simulation and co-simulation refinement for pGCL loops
4. Automated simulation relation proof using SMT and Caesar
5. Simulation and co-simulation as probabilistic coupling invariants
6. Set of examples including the first automated proof of the fast dice roller (as

far as we know).

3 Recap of the pGCL programming language and
expectation transformers

4 Program transformation using coupling invariants

Probabilistic program transformation is a basic approach to transforming an
abstract, and easily-understood program to an “equivalent” program, likely to be
harder to understand, but satisfying the same, or at least comparable properties.
The comparison can be formalised through the use of auxiliary variables and
coupling invariants.

Consider the following example for approximate probabilistic counting [?],
set out in Fig. 1. The program on the left Fig. 1a is an abstract program that
either doubles or leaves alone its approximate counting variable k. The required
specification is that the expected final value of k is equal to the real count N.
This can be proved quite easily via the invariant k-i. Other properties can also

….simulates….

{ 1/N } # Precondition

var v, t= 1, 0

while(¬t){
2 (vN) ! v= 2v

if (v>N) then t= 1 N/v� skip

2 (v>N) ! v= v-N

}
c= unif[0, N)

{ [c = i] } # Post condition for any 0  i < N

(a) Abstract roller

var c, v = 0, 1

while(v<N or c�N){
2 (v  N) ! v= 2v

c= 2c 1/2� c= 2c+1

2 (v > N) ! v,c= v-N,c-N

}

(b) Fast Dice Roller

Fig. 6: The fast dice roller

var c, v, t = 0, 1, 0 # v observable, c hidden

while(¬t){
2 (v  N) ! v= 2v; c= 2c 1/2� c= 2c+1

if (c<N and v>N) then t= 1

2 (v > N) ! v,c= v-N,c-N

}

Fig. 7: Intermediate fast dice roller

Developed at RWTH Aachen

www.caesarverifier.org/



We can model things like secure 
implementation of cloud storage…

Can t
his 

be 

implem
ente

d

is a value in the database?

Answer should only
return “yes/no” without
leaking any other information.



Conclusions for today

❖ What happens when some of the behaviour can be probabilistic in sequential programs?

❖ Do the traditional proof methods for sequential programs  (eg simulation) still work?

❖ Can we still use the abstract specification to prove properties of programs that use datatypes?

❖ If they don’t, what must be changed? 

❖ A semantics and refinement that distinguishes hidden and visible state;

❖ We can now talk about information leaks.

<latexit sha1_base64="jtfpgm5zzyZt0kGpKb5/bNv1ulk="></latexit>

V ⇥ DH ! D(V ⇥ DH)
<latexit sha1_base64="APFOuFtHwQUSaoop2n7k2HlbgZA=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjJaa7srunFZwT5gOpRMmmlDM8mQZIQy9DPcuFDErV/jzr8x01ZQ0QMhh3Pv5Z57woQzbRD6cAorq2vrG8XN0tb2zu5eef+go2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtOrvN6954qzaS4M9OEBjEeCRYxgo2V/KwfYzMOQ9iaDcoV5NaRxTlEbtX+9ZoljUYDnV9Az0VzVMASrUH5vT+UJI2pMIRjrX0PJSbIsDKMcDor9VNNE0wmeER9SwWOqQ6yueUZPLHKEEZS2ScMnKvfJzIcaz2NQ9uZO9S/a7n4V81PTVQPMiaS1FBBFouilEMjYX4/HDJFieFTSzBRzHqFZIwVJsamVLIhfF0K/yedM9erudXbaqV5tYyjCI7AMTgFHrgETXADWqANCJDgATyBZ8c4j86L87poLTjLmUPwA87bJ3K7kWM=</latexit>P

expressive POMDP interpretation, as depicted in Fig. 4, the result sets of the
two program fragments (4) –right then down vs. down then right– are the same;
and that is our goal, i.e. that the refinement distribute through the external
program’s operations:

((g, v),�) {((g, 0),�), ((g, 1),�)}

((g, v), u{0, 1}) {((g, 0), u{0, 1}), ((g, 1), u{0, 1})}

v:= 0 u1

c:= 0 1/2�1 c:=0 1/2�1

v:= 0 u1

Note that the second component of the state is a distribution (uniform u) over H, the
“hidden” c,coin, and that the nondeterministic choice of v therefore has the same
overall e↵ect irrespective of whether it precedes or follows the hidden probabilistic
assignment. The diagram commutes.

Fig. 4: Probabilistic simulation for program with POMDP interpretation.

Lemma 1 ( [25]). Given a POMDP model for probabilistic datatypes [25], the

existence of a simulation (Def. 3) which maps hidden state in in the abstract

datatype (I,OP, F ) to hidden state in the concrete datatype (I 0,OP
0
, F

0), implies

that (I,OP, F ) is refined by (I 0,OP
0
, F

0).

Proof. (Sketch) We use the assumption here that rep distributes through all pro-

gram operators, including external demonic nondeterminism, of the calling pro-

gram. The soundness proof of [12] completes this proof.

4 Property-preserving encryption
as a probabilistic datatype

In general, property-preserving encryption preserves some properties of the orig-
inal data; searchable encryption is the special case where relative order is pre-
served, so that comparisons can be carried out on the encrypted data, i.e. with-
out having to decrypt them: range searches could, for example, be carried out
without decryption. Order-preservation could be considered a beneficial leak; but
turns out however that some implementations of searching with order-preserving
encryption have been found to leak more than they should —– and so there is
interest in determining the impact of these unintentional leaks [17].

We approach the verification problem –viz assuring that there are no inadver-
tant and harmful information leaks– in terms of our QIF-setting for probabilistic
datatypes. Figure 7 sets out two datatypes for access to an encrypted array:
Fig. 5 is the specification for a search function, and Fig. 6 is the implementation.

Simulat
ion 

work
s!

Developed at RWTH Aachen

www.caesarverifier.org/


