Introduction to Explainable AI (XAI)

Alexander Gegov

Associate Professor in Computational Intelligence

University of Portsmouth alexander.gegov@port.ac.uk

Presentation Outline

- 1. AI Characteristics
- 2. AI Bias
- 3. XAI Taxonomy
- 4. XAI Types
- 5. XAI Formats
- 6. XAI Challenges
- 7. XAI Solutions
- 8. XAI Concept
- 9. XAI Books

1. AI Characteristics

- Responsibility
- **■** Trustworthiness
- Safety
- Reliability
- Fairness
- Transparency
- Interpretability
- Explainability

2. AI Bias

- Real world bias reflected in data bias
- Data bias encoded in algorithmic bias
- Algorithmic bias uncovered by XAI
- XAI used to mitigate real world bias

3. XAI Taxonomy

- Dataset application scope (global, local)
- Machine learning models (interpretable, black box)
- Model explanation methods (specific, agnostic)

4. XAI Types

- Pre-model(data XAI black box model user)
- In-model (data interpretable XAI model user)
- Post-model
- (data black box model XAI user)

5. XAI Formats

- What-if
- Counterfactual
- Example based
- **■** Constructive

6. XAI Challenges

- Evaluation
- **■** Formalisation
- Adoption
- Acceptance
- Causality
- Reasoning

- Explainable models
 Global analysis (all inputs and outputs)
 Local analysis (individual inputs and outputs)
- Meaningful explanations
 Simple structural models (inputs, outputs)
 Complex structural models (sub-models, connections)

Structural model presentation
 Directed graph (1-to-1 mapping of structural model)
 Graph edges (external inputs and outputs)
 Graph nodes (sub-models)
 Graph edges (internal connections)

Structural model evaluation
 Grid (horizontal levels and vertical layers)
 Number (external inputs and outputs)
 Number (sub-models and internal connections)

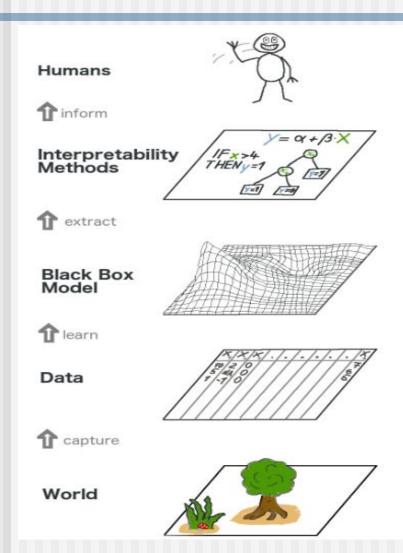
- Macro models (flat, black-box, single node)
 One 4-input-1-output node (level 1, layer 1)
 Shallow/concise explanations (for expert users)
 y = f (x1, x2, x3, x4)
- Micro models (hierarchical, white-box, multiple nodes)
 Two 2-input-1-connection nodes (levels 1-2, layer 1)
 One 2-connection-1-output node (level 1/2, layer 2)
 Deep/detailed explanations (for non-expert users)
 y = f [f1 (x1, x2), f2 (x3, x4)]

- Model is less complex than reality
 Flat model for a hierarchical process
 Rough/superficial explanations
- Model is more complex than reality
 Hierarchical model for a flat process
 Detailed/abstract explanations
- Model is as complex as reality
 Flat/hierarchical model for a flat/hierarchical process
 Precise/adequate explanations

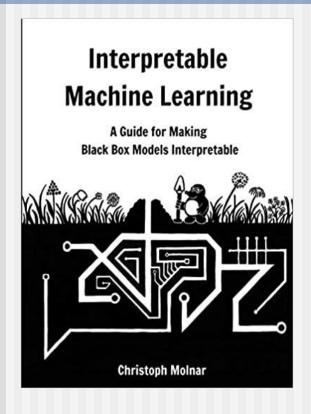
- Quantitative approachData (objective/observation context)
- Qualitative approach
 Knowledge (subjective/consultation context)
- Hybrid approach
 Data (objective/observation context)
 Knowledge (subjective/consultation context)

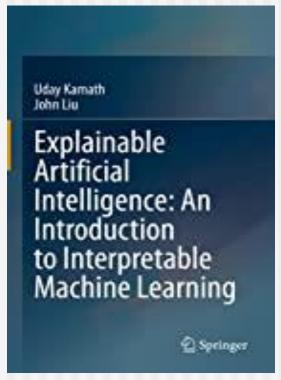
Model efficiency
 Decreases when MS/ME gets worse (FM)
 Increases when MS/ME gets better (HM)

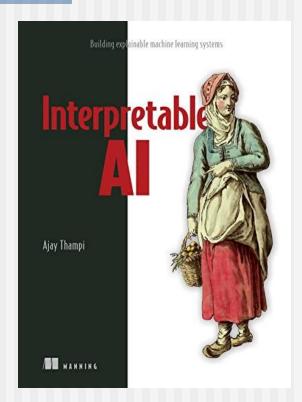
Model accuracy
 Increases when MS/ME gets worse (FM)
 Decreases when MS/ME gets better (HM)


(MS – model simplicity, ME – model explainability)

(FM – flat model, HM – hierarchical model)


Mortgage application (flat and hierarchical models)
 Outcome = FM (income, assets)
 Outcome = HM [repayments (income),
 deposit (assets)]


Job application (flat and hierarchical models)
 Outcome = FM (qualifications, experience)
 Outcome = HM [effectiveness (qualifications),
 efficiency (experience)]


8. XAI Context

9. XAI Books

