
The Self-Aware Digital Twin

Einar Broch Johnsen

University of Oslo
einarj@ifi.uio.no

BCS-FACS webinar
15 October 2024

http://www.sirius-labs.no

mailto:einarj@ifi.uio.no
http://www.sirius-labs.no
http://www.sirius-labs.no

Talk Overview

Digital Twins: Self-Aware Model-Centric Systems

• What are digital twins and why should they be self-aware?
• How can we program self-aware digital twins?
• How do digital twins adapt to changes in the twinned systems?
• What is correctness for digital twins?

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 2 / 42

http://www.envisage-project.eu

Part 1

What are digital twins?

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 3 / 42

http://www.envisage-project.eu

Digital Twins — The Hype

Digital twins are an emerging, enabling technology
for industry to transition to the next level of digitisation

Increasing traction of digital twins

1. A means to understand and control assets in nature, industry, and society at large

2. Companies increasingly create digital twins of their physical assets

Success stories

1. GE experienced 5–7% increase of energy production from digitizing wind farms

2. Johns Hopkins Hospital’s centre for clinical logistics reported 80% reduction of operating
theatre holds due to delays

3. For the Johan Sverdrup oil field, digital twin innovations have boosted earnings by $216
million in one year

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 4 / 42

http://www.envisage-project.eu

Digital Twins: A Best Practice Engineering Discipline

• DTs originally conceived at NASA for the
space program.

• DTs have emerged as an engineering
discipline, based on best practices

Star Wars
NASEM’s definition of a DT (2024)

“A digital twin is a set of virtual information
constructs that mimics the structure, context,
and behavior of a natural, engineered, or
social system (or system-of-systems), is dy-
namically updated with data from its physical
twin, has a predictive capability, and informs
decisions that realize value.”

NASEM Foundational research gaps and
future directions for digital twins, 2024

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 5 / 42

http://www.envisage-project.eu

What is a Digital Twin?

Actions

Observations

Physical
twin (PT)

Digital
twin (DT)

DT model in sync with PT

• DT is both model and control
• DT is a “live replica” of PT

Consequences of DT as model

• Explore decision space for PT
• Lifespan of DT and PT may differ

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 6 / 42

http://www.envisage-project.eu

Lifecycle Management

What does it mean to be a “live replica”?

• Connects designs, requirements and software that go into the system represented by the DT
• Evolve in tandem with PT lifecycle stages: design, development, operation, decommissioning, …
• Digitalisation turns this business management problem into a software engineering problem

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 7 / 42

http://www.envisage-project.eu

Domain Knowledge & Asset Models

What is an asset model?

Asset models capture the knowledge of Subject Matter Experts in a
framework that can be used to answer different business questions

• Asset characteristics: configuration, design doc-
uments and simulations, standards, failure models
• Condition data: current state of the asset
• Operational and environmental data: loading,
duty, rate information, corrosion rates, etc
• Business risk and cost: value framework, quanti-
fication of risk, costs of labour, equipment, etc

[Readi project]

[Wikipedia]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 8 / 42

https://readi-jip.org/
http://www.envisage-project.eu

Digital Twins: Conceptual Layers

Behavioral twin
e.g., simulation framework

Structural twin
domain knowledge, asset model, twin model

Data:
observations, parameters, domain model

Need for different “insights”:
• Descriptive: Insight into the past (“what happened”)
• Predictive: Understanding the future (“what may happen”)
• Prescriptive: Advise on possible outcomes (“what if”)
• Reactive: Automated decision making

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 9 / 42

http://www.envisage-project.eu

Programming challenges for DTs

Model-centric software

1. from business problems
to software engineering problems

2. from software engineering problems to general
programming with knowledge graphs

3. from general software to model management,
federation and configuration

…but how do we program that?
E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 10 / 42

http://www.envisage-project.eu

Part 2

How can we program digital twins?

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 11 / 42

http://www.envisage-project.eu

Reflection & Evolution

What is reflection?

“Reflection is the ability of a process to examine, introspect,
and modify its own structure and behavior” (Wikipedia)

In particular, with respect to external reference points

Can we use reflection to address evolution?
• DT needs to evolve in tandem with PT
• Reflection: tricky programming task!
• Digital thread as external reference point
• Domain knowledge as ext. reference point

Self-Adaptation & Models@Runtime

• Domain model: PT variability space
• Asset model: Current PT configuration
• Domain of analysis: DT variability space
• Twin model: Current DT configuration

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 12 / 42

http://www.envisage-project.eu

Example: House Heating
[Open Simulation Platform]

Structural twin

• Domain knowledge about houses:
what are houses? what are rooms and connections
between rooms, with corresponding simulators, etc
• Asset model:
instance of domain knowledge for particular house
• Domain knowledge for analysis:
the configuration space for behavioral twins
• Twin model: instance of domain knowledge for
particular analysis problem

Behavioral twin

• Digital twin: integrates observations, monitors and orchestrates simulators
• Twin configuration: simulators corresponding to the different parts of the asset

[Kamburjan, Klungre, Schlatte, Tapia Tarifa, Cameron, Johnsen: Digital Twin Reconfiguration Using Asset Models. ISoLA 2022]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 13 / 42

https://ebjohnsen.org/publication/22-isola2/22-isola2.pdf
http://www.envisage-project.eu

Twinning in SMOL

Programming support for twins with a behavioral and a structural layer

SMOL: Semantic Model Object Language

• SMOL is a small OO programming system which supports reflection into knowledge bases
• Runtime states in SMOL are automatically lifted into a structural model, and integrated with
domain knowledge formalised using ontologies

• Ontology reasoners allow querying the KB
• Programs can use reasoners to query the KB about themselves

Behavioral twins in SMOL
• SMOL can encapsulate simulators based on the FMI standard
• Using semantic reflection in SMOL, the twin configuration is
automatically lifted into the structural twin https://smolang.org

[Kamburjan, Klungre, Schlatte, Johnsen, Giese:
Programming and Debugging with
Semantically Lifted States. ESWC 2021]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 14 / 42

https://smolang.org/
https://ebjohnsen.org/publication/21-eswc/21-eswc.pdf
https://ebjohnsen.org/publication/21-eswc/21-eswc.pdf
http://www.envisage-project.eu

Behavioral twins in SMOL

Dynamically created model instances

• Need interface to continuous models
• For example, ML models, black-box simulators (e.g., proprietary), …
• FMI is an industry standard interface to simulators
• Continuous models can be dynamically embedded in SMOL objects

class Room(FMO[out Int i] fmo) end
main
FMO[in Int j, out Int i] cont = simulate(”path/to/fmu”, j=1, k=1);
Room c = new Room(cont);
cont.doStep(0.1); // FMI step function
Int v = cont.i; cont.j = v+1; // input/output to the simulator
end

[Kamburjan, Johnsen: Knowledge Structures Over Simulation Units. ANNSIM 2022]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 15 / 42

https://ebjohnsen.org/publication/22-annsim/22-annsim.pdf
http://www.envisage-project.eu

Example: A Self-Configuring Behavioral Twin

Realsys Shadow

Monitor
sys.val

shadow.val

FMO[out Double val] sys = simulate(”Realsys.fmu”);
FMO[out Double val] shadow = simulate(”Sim.fmu”, val=sys.val, p=1.0);
Monitor monitor = new Monitor(1.0);
monitor.run(sys, shadow);

DT orchestration

• Realsys: FMO wrappers for system observations
• Shadow: FMO wrappers for the behavioral twin
• Monitor drift between model and system

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 16 / 42

http://www.envisage-project.eu

Example: A Self-Configuring Behavioral Twin

Realsys Shadow

Monitor
sys.val

shadow.val

class Monitor(Double threshold)
Unit run(FMO[out Double val] sys, FMO[out Double val] shadow)
while shadow != null do
Double last = sys.val;
sys.doStep(1.0); shadow.doStep(1.0); // advance time
Double d = sys.val − shadow.val; // compute model drift
if(d≥ threshold) then this.findNewShadow(shadow.val, last); end

end end end

Model search

• findNewShadow realises a model search strategy
• Many possibilities for selecting parameter values
or selecting between different simulation units
• Need to organise this configuration space!

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 17 / 42

http://www.envisage-project.eu

Connecting Runtime States to a Knowledge Graph

The SMOL interpreter implements semantic lifting, the process
of generating a knowledge graph from the current program state

SMOL knowledge graph

• SMOL ontology: defines the general
vocabulary and basic axioms for states
• Class definitions of the SMOL program
• Knowledge generated from current runtime
state (object instances, heap and stack)
• User-defined domain ontology, if supplied

Semantic lifting

• The SMOL ontology and domain
ontology are given as files
• Virtualized heap and class table:
knowledge graph built on-demand for
specific query
• Type-safe language-integrated queries

[Kamburjan, Klungre, Schlatte, Johnsen, Giese: Programming and Debugging with Semantically Lifted States. ESWC 2021]
[Kamburjan, Klungre, Giese: Never Mind the Semantic Gap: Modular, Lazy and Safe Loading of RDF Data. ESWC 2022]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 18 / 42

https://ebjohnsen.org/publication/21-eswc/21-eswc.pdf
https://edkamb.github.io/files/eswc2.pdf
http://www.envisage-project.eu

Semantic Lifting from SMOL Runtime States

run:monitor run:sys "System"

0.0

smol:hasVar

smol:hasName
run:sha"Shadow"

run:val

run:val

"val"

smol:hasName

smol:hasName

prog:sysprog:shadow

smol:Simulation smol:Simulation

a a a

Output
smol:hasKind

0.0

sm
ol:
has

Va
r

run
:va

l

Knowledge graph for the behavioral
twin architecture

• OWL classes for simulators, input
and output ports
• OWL properties: Axioms describing
relations between classes

Semantic lifting of FMOs (X, path, fmu, buffer)

• Each FMO X is an instance of
smol:simulation
• X smol:hasName name(path)
• Each variable in buffer is related to an
instance of run:val

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 19 / 42

http://www.envisage-project.eu

Example: Programming with Reflection

SMOL programs can query the structural twin for information about its own state

class Building(List<Room> rooms) ... end

class Inspector()
Unit inspectStreet(String street)
List<Building> buildings := access(”SELECT ?x WHERE {?x a Villa. ?x :in %street}”);
this.inspectAll(buildings);
end
end

Villa EquivalentTo: rooms o length some xsd:int [>= 3]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 20 / 42

http://www.envisage-project.eu

SMOL’s Modeling Bridge

We now want to connect the SMOL program to an external asset model

• Use SMOL (and external simulators) to capture the effects of a process
• Interpret state via ontology expressing domain knowledge
[Qu, Kamburjan, Torabi, Giese: Semantically triggered qualitative simulation of a geological process. Appl. Comp. and Geosc. 21, 2024]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 21 / 42

https://doi.org/10.1016/j.acags.2023.100152
http://www.envisage-project.eu

SMOL’s Modeling Bridge

Bridging the gap

How to express what a SMOL runtime object represents in the domain?

class C(Int f,)models ”a domain:D”

end

run:obj
n

domain:obj

m1

prog:C domain:D

prog:f

domain:g

smol:models

a a

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 22 / 42

http://www.envisage-project.eu

Twinning the House

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

Controller

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

In
n
e
r

W
a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

Controller

Twinning the house

1. The asset model specifies simulators for the different physical components
2. The behavioral twin adds a controller to adjust heaters of adjacent rooms

Correctness of the behavioral twin

We can relate the structure of the asset to the structure of the behavioral twin:
• The components and structure of the asset are exactly mirrored by the twin

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 23 / 42

http://www.envisage-project.eu

Structural Evolution of the Asset

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

Controller

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

In
n
e
r

W
a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

Controller

Extending the house

1. New rooms are added to the house
2. Twin needs to reconfigure the simulation model and replace the controller

Structural evolution of behavioral twins

Idea: Use the structural twin to detect the structural drift between asset and twin
as a basis for model repair of the behavioral twin

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 24 / 42

http://www.envisage-project.eu

Structural Self-Adaptation

Status
• Asset model provides access to sensors from the PT,
• Asset model provides access to structure of the PT
• SMOL program can simulate model(s) of the PT

Putting it all together

• Compare simulations to sensors
• Compare digital with physical structure
How to formalize consistency?

• Self-adapt to changes in PT
How to repair?

DTPT

Commands

Sensor Data

[Kamburjan, Klungre, Schlatte, Tapia Tarifa, Cameron, Johnsen: Digital Twin Reconfiguration Using Asset Models. ISoLA 2022]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 25 / 42

https://ebjohnsen.org/publication/22-isola2/22-isola2.pdf
http://www.envisage-project.eu

DT Consistency

• A DT is consistent if it has the correct structure to operate on the current state of the PT
• DT uses correct models, correct configurations, adheres to current requirements
• How to formalize this in terms of reflection?

Controller
O

u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

Digital Twin Consistency

• Define each consistency contraint for “correct structure” as a defect query
• A defect query returns a witness for the violation of some consistency constraint
• DT is considered consistent it all defect queries return an empty set

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 26 / 42

http://www.envisage-project.eu

Detecting Changes in the Asset

Interacting with the structural twin

• Defect query detect changes between the asset and the simulation model
• Example: Construct list of objects from SPARQL query

class RoomAssert(String room, String wallLeft, String wallRight) end
....
List<RoomAssert> newRooms =
construct(”SELECT ?room ?wallLeft ?wallRight WHERE
{ ?x a asset:Room;

asset:right [asset:Wall_id ?wallRight];
asset:left [asset:Wall_id ?wallLeft]; asset:Room_id ?room.
FILTER NOT EXISTS {?y a prog:Room; prog:Room_id ?room.} }”);

Note: The query relates individuals in the asset model to runtime objects

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 27 / 42

http://www.envisage-project.eu

Evolving the Behavioral Twin

Identifying structural drift

• Both rooms to the left of the old house
• Both rooms to the right
• A room on either side

Reconfiguring the behavioral twin

1. Create the new simulation elements and insert them into the structure.

2. Repair virtual elements that are not reflecting elements in the asset

3. Validate result: Using reflection, we can check that the behavioral twin
now mirrors the asset: defect queries return empty sets after repair

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 28 / 42

http://www.envisage-project.eu

Digital Twins as Self-Adaptive Systems

Self-adaptive systems

• So far: Lifting of digital twin software and use of defect queries
• How to organize the relation between digital twin and digital thread?

MAPE-K architecture for self-adaptation

• Split system in managing system and
managed system

• Monitor managed systems, Analyze its
defects, Plan its repair and Execute the plan
based on Knowledge

• Where is the MAPE-K loop in digital twins?

Sensor Data

Commands

monitors adapts behavior

Managed System (behavior)

Monitor Analysis Planner Executor

Managing System (adapts behavior)

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 29 / 42

http://www.envisage-project.eu

Lifecycles and Structural Self-Adaptation

• Components of the physical twin have
different lifecycle stages

• Each lifecycle stage requires a different setup,
different MAPE components etc.

• May also be part of multiple lifecycles,
lifecycles may interact

• Do we really need to model the whole
transition system?

Operational vs. Declarative Lifecycles

• An operational lifecycle describes how to
change between different stages

• A declarative lifecycle describes what it
means to by at different stages

[Kamburjan, Bencomo, Tapia Tarifa, Johnsen: Declarative Lifecycle Management in Digital Twins. EDTconf 2024]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 30 / 42

https://ebjohnsen.org/publication/24-edt/24-edt.pdf
http://www.envisage-project.eu

Digital Twins as Two-Layered Self-Adaptive Systems

Managed System (structure)

Monitor Analysis Planner Executor

Managing System (adapts structure)

Managed System (behavior)

Monitor Analysis Planner Executor

Managing System (adapts behavior)

• Lifecycle stages are declarative,
defined by two predicates

• Membership predicate: When an asset is
considered to be in a stage

• Consistency predicate: When an asset’s
assigned components are considered
consistent with its stage

• Compatibility between stages: Compatibile
stages may restrict each other’s consistency
(similar to cross-product)

Self-adaptation based on abduction

Find explanation about components that make DT consistent with PT at detected lifecycle stage(s)

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 31 / 42

http://www.envisage-project.eu

Part 3

Correctness

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 32 / 42

http://www.envisage-project.eu

How to ensure quality and correctness of a DT?

Quality of a DT = Ability to reconfigure?

We have argued that correctness of a DT is its ability to adapt to changes in the PT, including
changing the correctness criteria for the PT

Examples using KG and reflection for detection and repair of model drift

• Do we use the correct requirement monitor at the current lifecycle stage?
• Do we apply the correct PT controller at the current lifecycle stage?
• Do current lifecycle stages always result in valid configurations?

How to make sure that the program interactions with the KG are correct?

• Typing: Do the queries from the program respect the object-oriented model of SMOL?
• Testing: Detecting bugs in self-adaptive digital twins

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 33 / 42

http://www.envisage-project.eu

Correctness of the Behavioural Twin

SMOL programs can query the structural twin to check (invariant)
properties for the behavioural twin (e.g., after the model search)

Consistency of lifted state wrt domain knowledge

• Example: An FMO with name Shadow is of class ShadowFMO
• Example: The range of the relation prog.shadow is ShadowFMO

Shapes: Constraints on subgraphs of the knowledge graph

• Example: Every node of class prog:Monitor has a path through the
properties prog:shadow and hasName to ‘‘Shadow’’

Queries: Express negative properties

• Example: The set ofMonitor instances that have loaded a simulator FMO
as a connection to the real system. (This set should be empty!)

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 34 / 42

http://www.envisage-project.eu

Type Safety of Semantic Reflection

Types & subject reduction for semantically reflected programs

• SMOL is statically typed, … even with an untyped query language
• Given a knowledge graph, we can guarantee subject reduction for well-typed programs?

answers(Q) ⊆ members(C)
Γ ⊢ List<C> l:=access(Q); : Unit

Q ⊆ {?x a prog:C.}
Γ ⊢ List<C> l:=access(Q); : Unit

Φ(Q) ⊑ prog:C

Γ ⊢ List<C> l:=access(Q); : Unit

∃C. ∃ȳ.
(
ϕ
)
⊑TC ⊑T ClassT′ Γ ⊢ l : List<T′> Γ ⊢ ei : Ti

Γ ⊢T
er l:=access(∃ȳ. ϕ, e1, . . . ,en) : Unit

Queries

• Query containment becomes
our subtyping relation
• Subtleties wrt entailment
regimes in knowledge graphs
• Complexity tractable if query
translates into DL concept

[Kamburjan, Kostylev: Type Checking Semantically Lifted
Programs via Query Containment under Entailment
Regimes, DL 2021]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 35 / 42

http://ceur-ws.org/Vol-2954/paper-19.pdf
http://ceur-ws.org/Vol-2954/paper-19.pdf
http://ceur-ws.org/Vol-2954/paper-19.pdf
http://www.envisage-project.eu

Can We Test Software Interacting with Knowledge Graphs?

Testing Knowledge Graphs Applications

• What exactly to test? Unit testing? Integration testing?
• How to get a test oracle?
• Main challenge: Knowledge graphs are highly structured inputs

Testing Knowledge Graphs Applications

• Generating random triples is easy
• Generating triples adhering to an ontology requires reasoning
• Mutating triples also requires reasoning
• Mutating single triples either obviously breaks system or changes too little

[John, Johnsen, Kamburjan:Mutation-Based Integration Testing of Knowledge Graph Applications, ISSRE 2024]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 36 / 42

https://ebjohnsen.org/publication/24-issre/24-issre.pdf
http://www.envisage-project.eu

Mutation Testing of Knowledge Graph Applications

Approach

• Main idea 1: Domain-specific
mutations change bigger parts of KG

• Main idea 2: Robustness mask to
specify where mutations are allowed

• Main idea 3: Monitoring queries as
testing oracles

• Mutation testing on ontologies and
knowledge graphs largely unexplored

• Existing approaches change single triples,
but these contain little information

• Domain-specific operations add or
change whole subgraphs

mutant
generator

original KG

mutation
operators

validity
checker

robustness
mask

mutated KG

test
executorsoftware

(with oracle)

/

valid

not valid

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 37 / 42

http://www.envisage-project.eu

Part 4

Example: GreenhouseDT

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 38 / 42

http://www.envisage-project.eu

GreenhouseDT: System Overview

GreenhouseDT: System description

• Physical twin: greenhouse, sensors and actuators
• Digital twin: extensible software architecture that
realizes behavioral self-adapatation (adaptive con-
trol) and architectural self-adaptation

• Simulation Model: program providing operations for
self-adaptation and control, reflecting the asset’s archi-
tecture (e.g., plants, actuators and their connections)
• Driver: triggers the self-adaptation and control loops
of the simulation model, relays decisions to actuators
• Knowledge Graph: the asset model — a formal
description of the physical twin
• Time-series database: interface to the sensors

[Kamburjan, Sieve, Baramashetru, Amato, Barmina,Occhipinti, Johnsen:
GreenhouseDT: An Exemplar for Digital Twins, SEAMS 2024]

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 39 / 42

https://ebjohnsen.org/publication/24-seams/24-seams.pdf
http://www.envisage-project.eu

Self-adaptation in GreenhouseDT

• Behavioral self-adaptation: adjust controller of water pump
to reach goal in asset model (e.g., humidity level in the pot)

• Architectural self-adaptation: change monitor & controller
to reflect changed goal (e.g., change of season) and plant health

Plant Health Monitoring

• Physical twin: infrared camera to the physical twin
• DT Infrastructure: Add NVDI values to database schema
and health status threshold values to the asset model

• Simulation Model:
Uses defect queries to adapt to NVDI thresholds

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 40 / 42

http://www.envisage-project.eu

Conclusion

Model-based
analysis

Configurability Predictions

Digital
Twins

Digital twins: summary

• From model-driven to model-centric engineering
- May change how programs are built in the future!

• Range of application domains:
- Huge industry interest
- Cyber-physical systems in the large

• Range of analysis techniques needed:
- Descriptive, predictive, prescriptive

• State of practice today:
- Ad hoc solutions: brittle, inflexible, monolitihic
- Lack of established software architectures

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 41 / 42

http://www.envisage-project.eu

Contributors to this Research

Shout outs to:

The great team who contributed to the work presented in this talk

• Eduard Kamburjan
• Silvia Lizeth Tapia Tarifa
• Andrea Pferscher
• Riccardo Sieve

• Nelly Bencomo
• Rudi Schlatte
• Tobias John
• Martin Giese

• Yuanwei Qu
• Egor Kostylev
• Vidar Klungre
• David Cameron

Collaborators and master students on the research projects

• A Digital Twin of the Oslo Fjord
• A Digital Twin for Pandemic Prediction
• Digital Arctic Twins

• BedreFlyt
• Sirius
• NebulOuS

E. B. Johnsen (UiO) The Self-Aware Digital Twin BCS-FACS, 15.10.2024 42 / 42

http://www.envisage-project.eu

	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:
	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:

