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Outline

▶ Develop a model of probabilistic computation based on

Scott domains satisfying the following conditions:

(i) It is based on the fundamental notions of probability theory

and denotational semantics

(ii) It supports a computable framework: an effective structure

(iii) It would give rise to the construction of simple and practical

monads, in particular for functional programming

languages, like Maybe, List, Powerset, etc.
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Modern Probability Theory

▶ Introduced by Andrey Kolomogoroff in 1933.

▶ It predates modern computer science.

▶ Fundamental basis of many branches of science

▶ Key role in Machine Learning, Deep Learning, Robotics,

Quantum Computing, Modelling, Cognitive Science, etc. 3 / 25



Sample Space and Probability space

▶ A probability space (A,ΣA, ν) is a sample space A with a

σ-algebra Σ of subsets or events (i.e., closed under

countable union, intersection and complementation) and

a probability map ν : ΣA → [0,1], with ν(A) = 1, and

ν(
⋃

i∈N Si) =
∑

i∈N ν(Si) for disjoint events Si ’s.

▶ Usually A = [0,1] with ΣA generated by open intervals and

the uniform (Lebesgue distribution) ν, or,

▶ A = {0,1}N with ΣA generated by open cylinders sets

[x1x2 · · · xn] with xi ∈ {0,1} and ν([x1x2 · · · xn]) = 2−n.
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Random Variables on Measurable Spaces

▶ A measurable space X is a space with a σ-algebra ΣX .

▶ A random variable on X is a measurable function

r : A → X , i.e., with r−1(B) ∈ ΣA for any B ∈ ΣX .

▶ The probability of B ∈ ΣX is ν(r−1(B)), i.e., it is the

probability of the event r−1(B) as determined by ν.

▶ Two random variables r1, r2 : A → X are equivalent or

have the same probability distribution if

ν(r−1
1 (B)) = ν(r−1

2 (B)) for all B ∈ ΣX .
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Domain Theory for Denotational Semantics

▶ Scott domains were introduced by Dana Scott in 1970:

▶ D∞ model of untyped lambda calculus D∞ ∼= (D∞ → D∞)

▶ Cartesian Closed Category: Hom(X × Y ,Z )∼= Hom(X ,Z Y )

▶ Gordon Plotkin 1977: a simply typed lambda calculus:

▶ Programming Language for Computable Functions (PCF)
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Bounded complete dcpo with a finitary approximation

▶ In dcpo (D,⊑), the way-below or finitary approximation

b ≪ a if (ci)i∈I directed &a ⊑ supi∈I ci =⇒ ∃i ∈ I.b ⊑ ci .

▶ B ⊂ D is a basis if

∀a ∈ D.a = supi∈I{b ∈ B : b ≪ a} with the set directed.

▶ Countably based dcpo: continuous or domain, e.g., N⊥

▶ Basis of Scott topology denoted ΩD:

↑↑b = {a ∈ D : b ≪ a} for b ∈ B.

▶ A Scott domain D is a bounded complete domain, i.e, If

any bounded set S ⊂ D has its least upper bound
⊔

S.

▶ Effective structure: On basis elements ≪ is recursive.
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Scott domain IR of intervals of real numbers R

▶ IR: Bounded closed real intervals with reverse inclusion:

▶ Lub of a directed or bounded set of intervals:

intersection of the intervals.

▶ Basis: rational intervals: [b1,b2] with b1,b2 ∈ Q.

▶ [b1,b2] ≪ [a1,a2] iff b1 < a1 and a2 < b2.

▶ Basis of Scott topology: For any rational interval [b1,b2],

↑↑[b1,b2] = {[a1,a2] : [a1,a2] ⊂ interior([b1,b2])}.

a1 a2

a=[a1 , a2 ]

π

IR
Increasing

partial order

R = Max (IR)

= R 8 / 25



Function space: essential for CCC of Scott domains

▶ Suppose D is a Scott domain and X is a topological space

with a continuous lattice of open sets, e.g., X is a Scott

domain or is any of the standard probability spaces A.

▶ Then the set of Scott continuous functions (X → D)

ordered pointwise is itself a Scott domain.

▶ A step function g : X → D is of the form

g = sup1≤i≤n diχOi with Oi ⊂ X open and di ∈ BD, and

g(x) = sup{di : x ∈ Oi}.

▶ Step functions provide a basis for (X → D).
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Monads for non-determinism

▶ Like the power set monad, there are three basic power

domain monads for non-determinism for a domain D.

▶ Lower (Hoare) power domain: LD

▶ Upper (Smyth) power domain: UD

▶ Convex (Plotkin) power domain: CD

▶ In all these power domains, the basis consists of finite

subsets of D but with different ordering.

▶ The CCC of Scott domains is closed under L and U.

▶ The CCC of “bifinite” domains is closed under C.
10 / 25



Probabilistic power domain PD of a domain D
▶ Introduced by Saheb-Djahromi 79, Jones & Plotkin 89

▶ For space X , a continuous valuation σ : ΩX → ([0,1],≤)

is a Scott continuous map on lattice of Scott opens of X :

(i) σ(∅) = 0, (ii) σ(O1 ∪ O2) + σ(O1 ∩ O2) = σ(O1) + σ(O2).

▶ Simple valuations: σ =
∑

1≤i≤n qiδbi , where bi ∈ X , qi ∈ R

with σ(O) =
∑

bi∈O qi , for open O.

▶ If D is a domain, the space of continuous valuations PD

pointwise-ordered is a domain: simple valuations as basis.

▶ P commutative monad on category of domains (Jones & Plotkin 89)

▶ Probability measures ↔ continuous valuations (Alvarez et al. 2000)
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Open problem: Any CCC of domains closed under P?

▶ Classification of CCC of domains: Achim Jung 88, 89, 90

▶ No known CCC of domains closed under P (Jung & Tix 98)

▶ Researchers had hoped such a CCC would provide a

domain-theoretic model for probabilistic computation

similar to power domains for non-determinism.
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Models lacking a CCC of domains closed under P

▶ Using other structures without an effective struture.

▶ CCC of dcpo’s with commutative monad P0, where P0C is
the smallest dcpo containing simple valuations on dcpo C.
Jia, Lindenhovius, Mislove, Zamdzhiev, 21. And Goubault-Larrecq, Jia, Théron, 23

Unlike a domain, P0C has no effective structure. Also:

Given f : C → P0E , binding operation requires

f † : P0C → P0E with (f †(q))(O) =
∫

C(f (c))(O) dq(c),

generally non-computable.

▶ Other models with non-standard, new concepts, structures:

Quasi-Borel spaces Vákár, Kammar, Staton 2019

Probabilistic coherent spaces Danos, Ehrhard 2011
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A natural approach to probabilistic computation

▶ Scott domains provide the basic and elegant structure in

modelling non-probabilistic computation successfully

▶ Opens as observable events: Smyth, Abramsky, Vickers, Jung

▶ Random variables—from standard sample/probability

spaces—on Scott domains capture probability distributions

▶ This function representation of probability distributions is

aligned with the functional language paradigm.

▶ Thus, a simple data type for probabilistic computation is

provided by random variables on Scott domains with an

equivalence relation on random variables
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Representation theorem for probability distributions

▶ A = {0,1}N or [0,1] with uniform probability distribution ν.

▶ Let D be a Scott domain. Then so is (A → D).

▶ P1D normalised probabilistic power domain of D (E. 1994)

▶ Theorem T : (A → D) → P1D with (T (r))(O) = ν(r−1(O))

▶ T is a continuous surjection (surjection: Mislove 2016)

▶ T takes step functions to simple valuations:

T (sup1≤i≤n diχOi ) =
∑

1≤i≤n ν(Oi)δ(di)

▶ T is an effectively given map both ways

▶ Preserves ≪ for A = (0,1), {0,1}N∗ (no infinite recurring 0)
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Domains with a Partial Equivalence Relation PER

▶ A PER domain (D,∼) is a Scott domain D with a

symmetric and transitive logical relation ∼ satisfying:

(i) ⊥ ∼ ⊥ and (ii) for chains (di)i∈N and (d ′
i )i∈N,

∀i ∈ N di ∼ d ′
i =⇒ supi∈N di ∼ supi∈N d ′

i

▶ Equivalence of random variables satisfies these conditions.

▶ For f ,g : D → E , define f ∼ g if d ∼ d ′ =⇒ f (d) ∼ g(d ′)

▶ Morphism [f ] : (D,∼) → (E ,∼) as PER class of maps

▶ ((D,∼D) → (E ,∼E)) is defined as (D → E) with ∼D→E

defined as PER of maps. Similarly, (D,∼D)× (E ,∼E).

▶ PER: The category of Scott domains with PER is a CCC
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Random variable functor R on PER category

▶ The R-topology ΥD ⊂ ΩD on a PER domain (D,∼D), as a

sub-Scott topology, consists of Scott open sets O ⊂ D

closed under ∼D, i.e., (d ∈ O &d ′ ∼D d) =⇒ d ′ ∈ O.

▶ The R functor is defined on PER category by:

▶ On objects: R(D,∼D) = ((A → D),∼A→D) with

r ∼A→D s if ∀ω ∈ A. r(ω) ∼D r(ω)& s(ω) ∼D s(ω),and

∀O ∈ ΥD. ν(r−1(O)) = ν(s−1(O)).

▶ On morphisms: [f ] : (D,∼D) → (E ,∼E) with

R[f ] : ((A → D),∼RD) → ((A → E),∼RE) given by

R[f ] = [λr . f ◦ r ].
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Turning random variable functor R into a monad

▶ Let h : (A, ν) → (A2, ν × ν) be a measure-preserving

continuous bijection on a set of full ν-measure on A.

▶ There are infinitely many ways to choose h. For example:

▶ For ω ∈ A = {0,1}N, define h(ω) = (ωe, ωo), where

ωe (respectively, ωo) is the sequence of values in

even (respectively, odd) positions in ω, i.e., for ∈ N

▶ (ωe)i = ω2i and (ωo)i = ω2i+1

▶ h is a homeomorphism with inverse k := h−1 : A2 → A:

k(ω, ω′) = ω′′, where ω′′
2i = ωi and ω′′

2i+1 = ω′
i for i ∈ N.
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A monad using the Hilbert space filling curve

▶ For A = [0,1], let h : [0,1] → [0,1]2 be the Hilbert curve.

▶ Domain-theoretic representation by four affine maps

Hi : [0,1]2 → [0,1]2, where i = 0,1,2,3:

H0

(
x

y

)
=

1
2

(
0 1

1 0

)(
x

y

)
, H1

(
x

y

)
=

1
2

(
1 0

0 1

)(
x

y

)
+

1
2

(
0

1

)
H2

(
x

y

)
=

1
2

(
1 0

0 1

)(
x

y

)
+

1
2

(
1

1

)
H3

(
x

y

)
=

−1
2

(
0 1

1 0

)(
x

y

)
+

1
2

(
2

1

)
.

▶ For ω ∈ [0,1], using quaternary representation, define:

h(ω) = h(0.4ω0ω1ω2 . . .) =
⋂

i∈N Hω0Hω1 . . .Hωi ([0,1]
2)
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Domain-theoretic generation of Hilbert’s curve, E. 93

▶ Three iterates starting with S = [0,1]2 of the map of

sub-squares: H : I[0,1]2 → I[0,1]2 with H(S) =
⋃3

i=0 Hi [S]

H([0,1]2) H2([0,1]2) H3([0,1]2)

▶ The nth iterate Hn([0,1]2) gives a grid of 4n sub-squares.

▶ h is 1-1 almost everywhere, with the countable exceptions:

four-to-one on any grid node, two-to-one on any grid line

▶ Easy derivation of h1(ω), h2(ω) for ω = 0.4ω0 . . . with h = ⟨h1,h2⟩.
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Very simple monads for probabilistic computation

▶ Probability space (A, ν) for A = {0,1}N or A = [0,1].

▶ Monad R : PER → PER with natural transformations

▶ Unit: ηD : D → (A → D) with ηD(d)(ω) = d .

▶ Flattening: µD : (A → (A → D)) → (A → D) with

µD(r)(ω) = r(h1(ω))(h2(ω)).

▶ Alternatively, as a Kleisli triple we have (R, η, (−)†) with

(−)† : (D → (A → E)) → ((A → D) → (A → E)) given by:

f †(r)(ω) = f (r(h1(ω)))(h2(ω)).

▶ Note: Monadic properties hold up to equivalence.
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The monads are strong and commutative

▶ Useful monads are both strong and commutative.

▶ For ⟨D,∼D⟩, ⟨E ,∼E⟩ ∈ PER, define

tD,E : D × RE → R(D × E), by tD,E(d , s) = ⟨ηD(d), s⟩.

▶ This gives a tensorial strength, i.e., R is strong.

▶ Also, t ′D,E : RD ×E → R(D ×E) with t ′D,E(r ,e) = ⟨r , ηE(e)⟩,

t ′†D,E ◦ tRD,E(r , s) = t ′†D,E⟨ηD(r), s⟩ = ⟨ηD(r), ηE(s)⟩,

t†D,E ◦ t ′D,RE(r , s) = t†D,E⟨r , ηE(s)⟩ = ⟨ηD(r), ηE(s)⟩.

▶ As the two expressions are equal, R is commutative.
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IID random variables for any probability distribution

▶ The inverse transform G of the cumulative distribution of

any probability distribution P on R gives a random variable

G∗ : [0,1] → IR with support on R = Max(IR).

▶ Any random variable r : A → D gives IID h1(r) and h2(r).

▶ The monad gives 2n IID random variables equivalent to r :

hin(hin−1(. . . (hi2(hi1(r))) . . .)) for 1 ≤ it ≤ 2 with 1 ≤ t ≤ n.

▶ EG. By Box-Muller transform, two Gaussian IID on R:

z1 =
√
−2 lnh1 cos2πh2 z2 =

√
−2 lnh2 cos2πh1

▶ For Gaussian IID ri ’s, student t-distribution of degree n:

r = rn+1√
n−1

∑n
i=1 r2

i

: [0,1] → IR, supported on R.
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Functions of random variables: Dirichlet distribution

▶ For αi > 0 and random variables xi on [0,1] with 1 ≤ i ≤ k ,

B(α) =
∏k

i=1 Γ(αi )

Γ(
∑k

i=1 αi )
Dirichlet distribution is: 1

B(α)

∏
1≤i≤k xαi−1

i

▶ The domain-theoretic Dirichlet distribution

Dα : (A → I[0,1])k → (A → I[0,1]) given by

Dα(r1, . . . , rk ) = λω.
∏k

i=1(ri (ω))
αi−1

B(α)

▶ Pointwise extension of the power map:

x 7→ xa : [0,1] → [0,1] is x 7→ xa : I[0,1] → I[0,1] with

xa =

 [(x−)a, (x+)a] a ≥ 0

[(x+)a, (x−)a] a < 0
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Further work

▶ A Simply typed λ-calculus for higher order probabilistic

computation with a constant for sampling

▶ Haskell implementation

▶ Conditional probabilities and Bayesian statistics

▶ Expectation values of functions of random variables

▶ Probabilistic computation on Polish (complete separable

metrizable) spaces

▶ Domain-theoretic model of stochastic processes
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