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Outline

» Develop a model of probabilistic computation based on

Scott domains satisfying the following conditions:

() Itis based on the fundamental notions of probability theory

and denotational semantics
(i) It supports a computable framework: an effective structure

(iii) 1t would give rise to the construction of simple and practical
monads, in particular for functional programming

languages, like Maybe, List, Powerset, etc.
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Modern Probability Theory

» Introduced by Andrey Kolomogoroff in 1933.

» It predates modern computer science.

» Fundamental basis of many branches of science

» Key role in Machine Learning, Deep Learning, Robotics,

Quantum Computing, Modelling, Cognitive Science, etc. 3/25



Sample Space and Probability space

> A probability space (A, X 4,v) is a sample space A with a
c-algebra ¥ of subsets or events (i.e., closed under
countable union, intersection and complementation) and
a probability map v : ¥ 4 — [0, 1], with »(A) =1, and
V(Ujen Si) = Xjen ¥(S;) for disjoint events S;'s.

» Usually A = [0, 1] with X4 generated by open intervals and

the uniform (Lebesgue distribution) v, or,

» A={0,1N with 4 generated by open cylinders sets

[X1X2 - - - Xn] With x; € {0,1} and v([x1Xx2- - - Xp]) = 27"
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Random Variables on Measurable Spaces

> A measurable space X is a space with a o-algebra X x.

» A random variable on X is a measurable function
r:A— X,i.e., with r-'(B) € X, forany B € ¥y.

> The probability of B ¢ Yx is v(r—1(B)), i.e., it is the
probability of the event r—'(B) as determined by v.

» Two random variables ry,r» : A — X are equivalent or
have the same probability distribution if

v(ry(B)) = v(ry '(B)) forall B € Y.
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Domain Theory for Denotational Semantics

» Scott domains were introduced by Dana Scott in 1970:
» D, model of untyped lambda calculus D, = (Ds, — D)
» Cartesian Closed Category: Hom(X x Y, Z)= Hom(X, Z")
» Gordon Plotkin 1977: a simply typed lambda calculus:

» Programming Language for Computable Functions (PCF)
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Bounded complete dcpo with a finitary approximation

» Indcpo (D, C), the way-below or finitary approximation
b < aif (¢;)jes directed & a T sup;c,¢; = 3Ji € I.b C c;.
» B cC Dis a basis if
Va e D.a=sup;jc/{b € B: b« a} with the set directed.
» Countably based dcpo: continuous or domain, e.g., N |
> Basis of Scott topology denoted QD:
tb={aeD:b< a}forbeB.
» A Scott domain D is a bounded complete domain, i.e, If
any bounded set S C D has its least upper bound | | S.

» Effective structure: On basis elements < is recursive. 7105



Scott domain IR of intervals of real numbers R

» IR: Bounded closed real intervals with reverse inclusion:
» Lub of a directed or bounded set of intervals:
intersection of the intervals.

» Basis: rational intervals: [by, bo] with by, bo € Q.

v

[b1,b2] < [81,82] iff by < ay and a» < bo.
» Basis of Scott topology: For any rational interval [by, bo],
T[b~| , bg] = {[81 , 82] : [81 , 82] C interior([b1 , bg])}

a T w R = Max (IR)

N

Increasing

a=[al ,a2] partial order
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Function space: essential for CCC of Scott domains

> Suppose D is a Scott domain and X is a topological space
with a continuous lattice of open sets, e.g., X is a Scott

domain or is any of the standard probability spaces A.

» Then the set of Scott continuous functions (X — D)
ordered pointwise is itself a Scott domain.

» A step function g : X — D is of the form
g = supi<j<p dixo, With O; C X open and d; € Bp, and
9(x) =sup{d; : x € Oj}.

» Step functions provide a basis for (X — D).
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Monads for non-determinism

> Like the power set monad, there are three basic power

domain monads for non-determinism for a domain D.
» Lower (Hoare) power domain: LD
» Upper (Smyth) power domain: UD
» Convex (Plotkin) power domain: CD
> |n all these power domains, the basis consists of finite
subsets of D but with different ordering.
» The CCC of Scott domains is closed under L and U.

» The CCC of “bifinite” domains is closed under C.
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Probabilistic power domain PD of a domain D
» Introduced by Saheb-Djahromi 79, Jones & Plotkin 89

» For space X, a continuous valuation ¢ : QX — ([0, 1], <)
is a Scott continuous map on lattice of Scott opens of X:
(i) o(0) = 0, (i) 0(O1 U O2) + o(0O1 N O) = (0O1) + (05).
» Simple valuations: o = Z1§,-Sn Qidp;, Where b; € X, gi € R
with 0(O) = >4, o i, for open O.
» If D is a domain, the space of continuous valuations PD
pointwise-ordered is a domain: simple valuations as basis.
» P commutative monad on category of domains (ones & piotkin 89)

» Probability measures <« continuous valuations (awarez etal. 2000)
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Open problem: Any CCC of domains closed under P?

» Classification of CCC of domains: Achim Jung 88, 89, 90

» No known CCC of domains closed under P (Jung & Tix 98)

» Researchers had hoped such a CCC would provide a
domain-theoretic model for probabilistic computation

similar to power domains for non-determinism.
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Models lacking a CCC of domains closed under P

» Using other structures without an effective struture.

» CCC of dcpo’s with commutative monad Py, where P,C is
the smallest dcpo containing simple valuations on dcpo C.

Jia, Lindenhovius, Mislove, Zamdzhiev, 21. And Goubault-Larrecq, Jia, Théron, 23
Unlike a domain, PyC has no effective structure. Also:
Given f : C — PyE, binding operation requires

f1: PoC — PoE with (f1())(0) = [(f(¢))(O) da(c),
generally non-computable.

» Other models with non-standard, new concepts, structures:
Quasi-Borel spaces vaar, kammar, staton 2019

Probabilistic coherent spaces panos, Enrhard 2011
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A natural approach to probabilistic computation

>

Scott domains provide the basic and elegant structure in
modelling non-probabilistic computation successfully
Opens as observable events: Smyth, Abramsky, Vickers, Jung
Random variables—from standard sample/probability
spaces—on Scott domains capture probability distributions
This function representation of probability distributions is
aligned with the functional language paradigm.

Thus, a simple data type for probabilistic computation is
provided by random variables on Scott domains with an

equivalence relation on random variables
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Representation theorem for probability distributions

» A={0,1N or [0, 1] with uniform probability distribution v.
» Let D be a Scott domain. Then sois (A — D).
» P'D normalised probabilistic power domain of D (E. 1994)
» Theorem T : (A — D) — P'D with (T(r))(O) = v(r~1(0))
» T is a continuous surjection (surjection: Mislove 2016)
» T takes step functions to simple valuations:

T(SUP1§i<n :XO,) Z1</<n v(0;)o(a;)
» T is an effectively given map both ways

> Preserves < for A= (0,1), {0, 1} (no infinite recurring 0)

15/25



Domains with a Partial Equivalence Relation PER

» A PER domain (D, ~) is a Scott domain D with a
symmetric and transitive logical relation ~ satisfying:
(i) L ~ L and (ii) for chains (d;)icn and (df)ien,
Vi e N dj ~ df = supjey di ~ supjey df

» Equivalence of random variables satisfies these conditions.

» Forf,g: D — E,definef~gifd~d = f(d) ~ g(d)

» Morphism [f] : (D, ~) — (E, ~) as PER class of maps

» ((D,~p) — (E,~E)) is defined as (D — E) with ~p_,¢
defined as PER of maps. Similarly, (D, ~p) x (E, ~g).

» PER: The category of Scott domains with PER is a CCC
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Random variable functor R on PER category

» The R-topology Tp C 2D on a PER domain (D, ~p), as a
sub-Scott topology, consists of Scott open sets O ¢ D
closed under ~p, i.e., (d € O&d ~pd) = d' € O.

» The R functor is defined on PER category by:

» On objects: R(D,~p) = ((A— D), ~a_p) with
re~a,pSifvwe A r(w) ~p rlw) & s(w) ~p s(w),and
YO € Tp.v(r 1(0)) = v(s'(0)).

» On morphisms: [f] : (D, ~p) — (E,~g) with
Rf] : ((A— D),~pp) — ((A— E),~gE) given by
R[f] = [Ar.for].
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Turning random variable functor R into a monad

> Leth: (A v) — (A%, v x v) be a measure-preserving

continuous bijection on a set of full »-measure on A.
» There are infinitely many ways to choose h. For example:
> Forw e A= {0,1}", define h(w) = (w®, w®), where

w® (respectively, w°) is the sequence of values in

even (respectively, odd) positions in w, i.e., for ¢ N
> (W) = wyj and (W) = wajt
» his a homeomorphism with inverse k := h=' : A2 - A:

1

/ i 2 — H
k(w,w') = ", where wy; = w; and wy;, y = wj for i € N.
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A monad using the Hilbert space filling curve

> For A=[0,1], let h:[0,1] — [0, 1]2 be the Hilbert curve.
» Domain-theoretic representation by four affine maps

H; : [0,1]2 — [0,1]2, where i = 0,1, 2, 3:

o()=2( ) 0) #0)=2( ) () +2()
%)=z ) () 2 ()
()2 () () r2()

» For w € [0, 1], using quaternary representation, define:

h(w) = h(0.4wowiws . ..) = Njcny HugHey - - - Hui ([0, 1]2)

N
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Domain-theoretic generation of Hilbert’s curve, E. 93

> Three iterates starting with S = [0, 1]? of the map of

sub-squares: H : 1[0,1]? — 1[0, 1]? with H(S) = U3, Hi[S]

_ | M rmrm

1 [ | Hi H At

L] b B el e B e

— | dhes

— |~ | brond

— - macn

H([0,1]2) H2([0,112) H3([0,1]2)

» The n" iterate H"([0, 1]?) gives a grid of 4" sub-squares.
» his 1-1 almost everywhere, with the countable exceptions:
four-to-one on any grid node, two-to-one on any grid line

» Easy derivation of hy(w), ho(w) for w = 0.4wo . .. With h = (hy, ho}.
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Very simple monads for probabilistic computation
» Probability space (A, v) for A= {0,1}N or A= [0, 1].
» Monad R : PER — PER with natural transformations
> Unit: 7p: D — (A— D) with 5p(d)(w) = d.
» Flattening: up:(A— (A— D)) — (A — D) with
pp(r)(w) = r(hy(w))(ha(w)).

Alternatively, as a Kleisli triple we have (R, n, (—)") with

v

(-):(D— (A— E)) = ((A— D) = (A — E)) given by:
fi(r)(w) = f(r(hs(w)))(h2(w)).

» Note: Monadic properties hold up to equivalence.
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The monads are strong and commutative

» Useful monads are both strong and commutative.

v

For (D, ~p), (E,~g) € PER, define

toe: D x RE — R(D x E), by tp £(d, s) = (np(d), s).

» This gives a tensorial strength, i.e., R is strong.

> Also, tp g : RD x E — R(D x E) with t, £(r, e) = (r,ne(e)),
t3 £ © tap,e(r, 8) = t £ (np(r), ) = (np(r), ne(s)),

the o thre(r8) = th e (r.me(s)) = (np(r), ne(s))-

> As the two expressions are equal, R is commutative.
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lID random variables for any probability distribution

» The inverse transform G of the cumulative distribution of
any probability distribution P on R gives a random variable
G* : [0, 1] — IR with support on R = Max(IR).

» Any random variable r : A — D gives |ID h{(r) and hx(r).

» The monad gives 2" IID random variables equivalent to r:
hi,(hi,_, (... (hy(hy(r)))...)) for1 < <2with1 <t <n.

» EG. By Box-Muller transform, two Gaussian 11D on R:
2y = +/—21In hy cos 2 hy Zo = v/—21n ho cos 21 hy

» For Gaussian IID r;’s, student t-distribution of degree n:

\/n_f”z%“ [0,1] — IR, supported on R.
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Functions of random variables: Dirichlet distribution

» For a; > 0 and random variables x; on [0, 1] with 1 </ < Kk,

B(a) = rl_(lg, 1( ,)) Dirichlet distribution is: B H1<,<k X -
» The domain-theoretic Dirichlet distribution

D, : (A—1[0,1))¥ — (A — 1[0, 1]) given by

D.(ri,...,rx) = )\w.%
> Pointwise extension of the power map:

X +— x2:[0,1] — [0,1] is x — x2: 1[0, 1] — 1[0, 1] with

[(x7)3 () a=0

[(xM)3 () a<0

X2 =
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Further work

» A Simply typed A-calculus for higher order probabilistic

computation with a constant for sampling
» Haskell implementation
» Conditional probabilities and Bayesian statistics
» Expectation values of functions of random variables

» Probabilistic computation on Polish (complete separable

metrizable) spaces
» Domain-theoretic model of stochastic processes
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