Scott models for probabilistic computation:

a Cartesian closed category for random variables

Pietro Di Gianantonio Abbas Edalat

BCS Seminar, 26 March 2024

Outline

- Develop a model of probabilistic computation based on Scott domains satisfying the following conditions:
(i) It is based on the fundamental notions of probability theory and denotational semantics
(ii) It supports a computable framework: an effective structure
(iii) It would give rise to the construction of simple and practical monads, in particular for functional programming languages, like Maybe, List, Powerset, etc.

Modern Probability Theory

- Introduced by Andrey Kolomogoroff in 1933.
- It predates modern computer science.
- Fundamental basis of many branches of science
- Key role in Machine Learning, Deep Learning, Robotics, Quantum Computing, Modelling, Cognitive Science, etc.

Sample Space and Probability space

- A probability space $\left(A, \Sigma_{A}, \nu\right)$ is a sample space A with a σ-algebra Σ of subsets or events (i.e., closed under countable union, intersection and complementation) and a probability map $\nu: \Sigma_{A} \rightarrow[0,1]$, with $\nu(A)=1$, and $\nu\left(\bigcup_{i \in \mathbb{N}} S_{i}\right)=\sum_{i \in \mathbb{N}} \nu\left(S_{i}\right)$ for disjoint events S_{i} 's.
- Usually $A=[0,1]$ with Σ_{A} generated by open intervals and the uniform (Lebesgue distribution) ν, or,
- $A=\{0,1\}^{\mathbb{N}}$ with Σ_{A} generated by open cylinders sets [$\left.x_{1} x_{2} \cdots x_{n}\right]$ with $x_{i} \in\{0,1\}$ and $\nu\left(\left[x_{1} x_{2} \cdots x_{n}\right]\right)=2^{-n}$.

Random Variables on Measurable Spaces

- A measurable space X is a space with a σ-algebra Σ_{X}.
- A random variable on X is a measurable function $r: A \rightarrow X$, i.e., with $r^{-1}(B) \in \Sigma_{A}$ for any $B \in \Sigma_{X}$.
- The probability of $B \in \Sigma_{X}$ is $\nu\left(r^{-1}(B)\right)$, i.e., it is the probability of the event $r^{-1}(B)$ as determined by ν.
- Two random variables $r_{1}, r_{2}: A \rightarrow X$ are equivalent or have the same probability distribution if $\nu\left(r_{1}^{-1}(B)\right)=\nu\left(r_{2}^{-1}(B)\right)$ for all $B \in \Sigma_{X}$.

Domain Theory for Denotational Semantics

- Scott domains were introduced by Dana Scott in 1970:
- D_{∞} model of untyped lambda calculus $D_{\infty} \cong\left(D_{\infty} \rightarrow D_{\infty}\right)$
- Cartesian Closed Category: $\operatorname{Hom}(X \times Y, Z) \cong \operatorname{Hom}\left(X, Z^{Y}\right)$
- Gordon Plotkin 1977: a simply typed lambda calculus:
- Programming Language for Computable Functions (PCF)

Bounded complete dcpo with a finitary approximation

- In dcpo (D, \sqsubseteq), the way-below or finitary approximation $b \ll a$ if $\left(c_{i}\right)_{i \in I}$ directed \& $a \sqsubseteq \sup _{i \in I} c_{i} \Longrightarrow \exists i \in I . b \sqsubseteq c_{i}$.
- $B \subset D$ is a basis if
$\forall a \in D . a=\sup _{i \in f}\{b \in B: b \ll a\}$ with the set directed.
- Countably based dcpo: continuous or domain, e.g., \mathbb{N}_{\perp}
- Basis of Scott topology denoted ΩD :
$\uparrow b=\{a \in D: b \ll a\}$ for $b \in B$.
- A Scott domain D is a bounded complete domain, i.e, If any bounded set $S \subset D$ has its least upper bound $\bigsqcup S$.
- Effective structure: On basis elements \ll is recursive.

Scott domain IR of intervals of real numbers \mathbf{R}

- IR: Bounded closed real intervals with reverse inclusion:
- Lub of a directed or bounded set of intervals:
intersection of the intervals.
- Basis: rational intervals: $\left[b_{1}, b_{2}\right]$ with $b_{1}, b_{2} \in \mathbb{Q}$.
- $\left[b_{1}, b_{2}\right] \ll\left[a_{1}, a_{2}\right]$ iff $b_{1}<a_{1}$ and $a_{2}<b_{2}$.
- Basis of Scott topology: For any rational interval [b_{1}, b_{2}], $\uparrow\left[b_{1}, b_{2}\right]=\left\{\left[a_{1}, a_{2}\right]:\left[a_{1}, a_{2}\right] \subset\right.$ interior $\left.\left(\left[b_{1}, b_{2}\right]\right)\right\}$.

Function space: essential for CCC of Scott domains

- Suppose D is a Scott domain and X is a topological space with a continuous lattice of open sets, e.g., X is a Scott domain or is any of the standard probability spaces A.
- Then the set of Scott continuous functions $(X \rightarrow D)$ ordered pointwise is itself a Scott domain.
- A step function $g: X \rightarrow D$ is of the form

$$
\begin{aligned}
& g=\sup _{1 \leq i \leq n} d_{i} \chi_{O_{i}} \text { with } O_{i} \subset X \text { open and } d_{i} \in B_{D}, \text { and } \\
& g(x)=\sup \left\{d_{i}: x \in O_{i}\right\} .
\end{aligned}
$$

- Step functions provide a basis for $(X \rightarrow D)$.

Monads for non-determinism

- Like the power set monad, there are three basic power domain monads for non-determinism for a domain D.
- Lower (Hoare) power domain: $L D$
- Upper (Smyth) power domain: UD
- Convex (Plotkin) power domain: $C D$
- In all these power domains, the basis consists of finite subsets of D but with different ordering.
- The CCC of Scott domains is closed under L and U.
- The CCC of "bifinite" domains is closed under C.

Probabilistic power domain $P D$ of a domain D

- Introduced by Saheb-Djahromi 79, Jones \& Plotkin 89
- For space X, a continuous valuation $\sigma: \Omega X \rightarrow([0,1], \leq)$ is a Scott continuous map on lattice of Scott opens of X :

$$
\text { (i) } \sigma(\emptyset)=0 \text {, (ii) } \sigma\left(O_{1} \cup O_{2}\right)+\sigma\left(O_{1} \cap O_{2}\right)=\sigma\left(O_{1}\right)+\sigma\left(O_{2}\right) \text {. }
$$

- Simple valuations: $\sigma=\sum_{1 \leq i \leq n} q_{i} \delta_{b_{i}}$, where $b_{i} \in X, q_{i} \in \mathbf{R}$ with $\sigma(O)=\sum_{b_{i} \in O} q_{i}$, for open O.
- If D is a domain, the space of continuous valuations $P D$ pointwise-ordered is a domain: simple valuations as basis.
- P commutative monad on category of domains (Jones \& Plotkin 89)
- Probability measures \leftrightarrow continuous valuations (Alvarez etâl: 2000日)

Open problem: Any CCC of domains closed under P ?

- Classification of CCC of domains: Achim Jung 88, 89, 90
- No known CCC of domains closed under P (Jung \& Tix 98)
- Researchers had hoped such a CCC would provide a domain-theoretic model for probabilistic computation similar to power domains for non-determinism.

Models lacking a CCC of domains closed under P

- Using other structures without an effective struture.
- CCC of dcpo's with commutative monad P_{0}, where $P_{0} C$ is the smallest dcpo containing simple valuations on dcpo C.
Jia, Lindenhovius, Mislove, Zamdzhiev, 21. And Goubault-Larrecq, Jia, Théron, 23
Unlike a domain, $P_{0} C$ has no effective structure. Also:
Given $f: C \rightarrow P_{0} E$, binding operation requires
$f^{\dagger}: P_{0} C \rightarrow P_{0} E$ with $\left(f^{\dagger}(q)\right)(O)=\int_{C}(f(c))(O) d q(c)$, generally non-computable.
- Other models with non-standard, new concepts, structures:

Quasi-Borel spaces vákár, Kammar, Staton 2019
Probabilistic coherent spaces Danos, Ehrhard 2011

A natural approach to probabilistic computation

- Scott domains provide the basic and elegant structure in modelling non-probabilistic computation successfully
- Opens as observable events: Smyth, Abramsky, Vickers, Jung
- Random variables-from standard sample/probability spaces-on Scott domains capture probability distributions
- This function representation of probability distributions is aligned with the functional language paradigm.
- Thus, a simple data type for probabilistic computation is provided by random variables on Scott domains with an equivalence relation on random variables

Representation theorem for probability distributions

- $A=\{0,1\}^{\mathbb{N}}$ or $[0,1]$ with uniform probability distribution ν.
- Let D be a Scott domain. Then so is $(A \rightarrow D)$.
- $P^{1} D$ normalised probabilistic power domain of D (E. 1994)
- Theorem $T:(A \rightarrow D) \rightarrow P^{1} D$ with $(T(r))(O)=\nu\left(r^{-1}(O)\right)$
- T is a continuous surjection (surjection: Mislove 2016)
- T takes step functions to simple valuations:

$$
T\left(\sup _{1 \leq i \leq n} d_{i} \chi_{o_{i}}\right)=\sum_{1 \leq i \leq n} \nu\left(O_{i}\right) \delta\left(d_{i}\right)
$$

- T is an effectively given map both ways
- Preserves \ll for $A=(0,1),\{0,1\}_{*}^{\mathbb{N}}$ (no infinite recurring 0$)$

Domains with a Partial Equivalence Relation PER

- A PER domain (D, \sim) is a Scott domain D with a symmetric and transitive logical relation \sim satisfying:
(i) $\perp \sim \perp$ and (ii) for chains $\left(d_{i}\right)_{i \in \mathbb{N}}$ and $\left(d_{i}^{\prime}\right)_{i \in \mathbb{N}}$,
$\forall i \in \mathbb{N} d_{i} \sim d_{i}^{\prime} \Longrightarrow \sup _{i \in \mathbb{N}} d_{i} \sim \sup _{i \in \mathbb{N}} d_{i}^{\prime}$
- Equivalence of random variables satisfies these conditions.
- For $f, g: D \rightarrow E$, define $f \sim g$ if $d \sim d^{\prime} \Longrightarrow f(d) \sim g\left(d^{\prime}\right)$
- Morphism $[f]:(D, \sim) \rightarrow(E, \sim)$ as PER class of maps
- $\left(\left(D, \sim_{D}\right) \rightarrow\left(E, \sim_{E}\right)\right)$ is defined as $(D \rightarrow E)$ with $\sim_{D \rightarrow E}$ defined as PER of maps. Similarly, $\left(D, \sim_{D}\right) \times\left(E, \sim_{E}\right)$.
- PER: The category of Scott domains with PER is a CCC

Random variable functor R on PER category

- The R-topology $\Upsilon_{D} \subset \Omega D$ on a PER domain (D, \sim_{D}), as a sub-Scott topology, consists of Scott open sets $O \subset D$ closed under \sim_{D}, i.e., $\left(d \in O \& d^{\prime} \sim_{D} d\right) \Longrightarrow d^{\prime} \in O$.
- The R functor is defined on PER category by:
- On objects: $R\left(D, \sim_{D}\right)=\left((A \rightarrow D), \sim_{A \rightarrow D}\right)$ with
$r \sim_{A \rightarrow D} s$ if $\forall \omega \in A . r(\omega) \sim_{D} r(\omega) \& s(\omega) \sim_{D} s(\omega)$, and
$\forall O \in \Upsilon_{D} \cdot \nu\left(r^{-1}(O)\right)=\nu\left(s^{-1}(O)\right)$.
- On morphisms: $[f]:\left(D, \sim_{D}\right) \rightarrow\left(E, \sim_{E}\right)$ with
$R[f]:\left((A \rightarrow D), \sim_{R D}\right) \rightarrow\left((A \rightarrow E), \sim_{R E}\right)$ given by
$R[f]=[\lambda r . f \circ r]$.

Turning random variable functor R into a monad

- Let $h:(A, \nu) \rightarrow\left(A^{2}, \nu \times \nu\right)$ be a measure-preserving continuous bijection on a set of full ν-measure on A.
- There are infinitely many ways to choose h. For example:
- For $\omega \in A=\{0,1\}^{\mathbb{N}}$, define $h(\omega)=\left(\omega^{\mathrm{e}}, \omega^{\mathrm{o}}\right)$, where ω^{e} (respectively, ω°) is the sequence of values in even (respectively, odd) positions in ω, i.e., for $\in \mathbb{N}$
- $\left(\omega^{\mathrm{e}}\right)_{i}=\omega_{2 i} \quad$ and $\quad\left(\omega^{\mathrm{o}}\right)_{i}=\omega_{2 i+1}$
- h is a homeomorphism with inverse $k:=h^{-1}: A^{2} \rightarrow A$:
$k\left(\omega, \omega^{\prime}\right)=\omega^{\prime \prime}$, where $\omega_{2 i}^{\prime \prime}=\omega_{i}$ and $\omega_{2 i+1}^{\prime \prime}=\omega_{i}^{\prime}$ for $i \in \mathbb{N}$.

A monad using the Hilbert space filling curve

- For $A=[0,1]$, let $h:[0,1] \rightarrow[0,1]^{2}$ be the Hilbert curve.
- Domain-theoretic representation by four affine maps

$$
H_{i}:[0,1]^{2} \rightarrow[0,1]^{2} \text {, where } i=0,1,2,3:
$$

$$
\begin{gathered}
H_{0}\binom{x}{y}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}, \quad H_{1}\binom{x}{y}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}+\frac{1}{2}\binom{0}{1} \\
H_{2}\binom{x}{y}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}+\frac{1}{2}\binom{1}{1} \\
H_{3}\binom{x}{y}=\frac{-1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}+\frac{1}{2}\binom{2}{1} .
\end{gathered}
$$

- For $\omega \in[0,1]$, using quaternary representation, define:

$$
h(\omega)=h\left(0.4 \omega_{0} \omega_{1} \omega_{2} \ldots\right)=\bigcap_{i \in \mathbb{N}} H_{\omega_{0}} H_{\omega_{1}} \ldots H_{\omega_{i}}\left([0,1]^{2}\right)
$$

Domain-theoretic generation of Hilbert's curve, E. 93

- Three iterates starting with $S=[0,1]^{2}$ of the map of sub-squares: $H: I[0,1]^{2} \rightarrow \mathbf{I}[0,1]^{2}$ with $H(S)=\bigcup_{i=0}^{3} H_{i}[S]$

$H\left([0,1]^{2}\right)$

$H^{2}\left([0,1]^{2}\right)$

$H^{3}\left([0,1]^{2}\right)$
- The $n^{\text {th }}$ iterate $H^{n}\left([0,1]^{2}\right)$ gives a grid of 4^{n} sub-squares.
- h is 1-1 almost everywhere, with the countable exceptions: four-to-one on any grid node, two-to-one on any grid line
- Easy derivation of $h_{1}(\omega), h_{2}(\omega)$ for $\omega=0.4 \omega_{0} \cdots$ with $h=\left\langle h_{1}, h_{2}{ }^{7}\right.$.

Very simple monads for probabilistic computation

- Probability space (A, ν) for $A=\{0,1\}^{\mathbb{N}}$ or $A=[0,1]$.
- Monad R : PER \rightarrow PER with natural transformations
- Unit: $\quad \eta_{D}: D \rightarrow(A \rightarrow D)$ with $\eta_{D}(d)(\omega)=d$.
- Flattening: $\quad \mu_{D}:(A \rightarrow(A \rightarrow D)) \rightarrow(A \rightarrow D)$ with

$$
\mu_{D}(r)(\omega)=r\left(h_{1}(\omega)\right)\left(h_{2}(\omega)\right)
$$

- Alternatively, as a Kleisli triple we have $\left(R, \eta,(-)^{\dagger}\right)$ with

$$
\begin{aligned}
& (-)^{\dagger}:(D \rightarrow(A \rightarrow E)) \rightarrow((A \rightarrow D) \rightarrow(A \rightarrow E)) \text { given by: } \\
& f^{\dagger}(r)(\omega)=f\left(r\left(h_{1}(\omega)\right)\right)\left(h_{2}(\omega)\right) .
\end{aligned}
$$

- Note: Monadic properties hold up to equivalence.

The monads are strong and commutative

- Useful monads are both strong and commutative.
- For $\left\langle D, \sim_{D}\right\rangle,\left\langle E, \sim_{E}\right\rangle \in \mathbf{P E R}$, define

$$
t_{D, E}: D \times R E \rightarrow R(D \times E), \text { by } t_{D, E}(d, s)=\left\langle\eta_{D}(d), s\right\rangle .
$$

- This gives a tensorial strength, i.e., R is strong.
- Also, $t_{D, E}^{\prime}: R D \times E \rightarrow R(D \times E)$ with $t_{D, E}^{\prime}(r, e)=\left\langle r, \eta_{E}(e)\right\rangle$,
$t_{D, E}^{\prime \dagger} \circ t_{R D, E}(r, s)=t_{D, E}^{\prime \dagger}\left\langle\eta_{D}(r), s\right\rangle=\left\langle\eta_{D}(r), \eta_{E}(s)\right\rangle$,
$t_{D, E}^{\dagger} \circ t_{D, R E}^{\prime}(r, s)=t_{D, E}^{\dagger}\left\langle r, \eta_{E}(s)\right\rangle=\left\langle\eta_{D}(r), \eta_{E}(s)\right\rangle$.
- As the two expressions are equal, R is commutative.

IID random variables for any probability distribution

- The inverse transform G of the cumulative distribution of any probability distribution P on \mathbf{R} gives a random variable $G^{*}:[0,1] \rightarrow \mathbf{I R}$ with support on $\mathbf{R}=\operatorname{Max}(\mathbf{I R})$.
- Any random variable $r: A \rightarrow D$ gives IID $h_{1}(r)$ and $h_{2}(r)$.
- The monad gives 2^{n} IID random variables equivalent to r :

$$
h_{i_{n}}\left(h_{i_{n-1}}\left(\ldots\left(h_{i_{2}}\left(h_{i_{1}}(r)\right)\right) \ldots\right)\right) \text { for } 1 \leq i_{t} \leq 2 \text { with } 1 \leq t \leq n .
$$

- EG. By Box-Muller transform, two Gaussian IID on R:

$$
z_{1}=\sqrt{-2 \ln h_{1}} \cos 2 \pi h_{2} \quad z_{2}=\sqrt{-2 \ln h_{2}} \cos 2 \pi h_{1}
$$

- For Gaussian IID r's, student t-distribution of degree n : $r=\frac{r_{n+1}}{\sqrt{n^{-1} \sum_{i=1}^{n} r_{i}^{2}}}:[0,1] \rightarrow \mathbf{I R}$, supported on \mathbf{R}.

Functions of random variables: Dirichlet distribution

- For $\alpha_{i}>0$ and random variables x_{i} on $[0,1]$ with $1 \leq i \leq k$, $B(\alpha)=\frac{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}$ Dirichlet distribution is: $\frac{1}{B(\alpha)} \prod_{1 \leq i \leq k} x_{i}^{\alpha_{i}-1}$
- The domain-theoretic Dirichlet distribution
$D_{\alpha}:(A \rightarrow \mathbf{I}[0,1])^{k} \rightarrow(A \rightarrow \mathbf{I}[0,1])$ given by
$D_{\alpha}\left(r_{1}, \ldots, r_{k}\right)=\lambda \omega \cdot \frac{\prod_{i=1}^{k}\left(r_{i}(\omega)\right)^{\alpha_{i}-1}}{B(\alpha)}$
- Pointwise extension of the power map:
$x \mapsto x^{a}:[0,1] \rightarrow[0,1]$ is $x \mapsto x^{a}: I[0,1] \rightarrow I[0,1]$ with
$x^{a}= \begin{cases}{\left[\left(x^{-}\right)^{a},\left(x^{+}\right)^{a}\right]} & a \geq 0 \\ {\left[\left(x^{+}\right)^{a},\left(x^{-}\right)^{a}\right]} & a<0\end{cases}$

Further work

- A Simply typed λ-calculus for higher order probabilistic computation with a constant for sampling
- Haskell implementation
- Conditional probabilities and Bayesian statistics
- Expectation values of functions of random variables
- Probabilistic computation on Polish (complete separable metrizable) spaces
- Domain-theoretic model of stochastic processes

