

Examiner Report

Qualification Name Higher Education Qualification

Qualification Level Certificate in IT

Date/ Series April 2024

Module Software Development

General Comments

Section A overall:
Most questions required candidates to write code.

The overriding impression throughout Section A was the inability to provide code that met
requirements set out in the question. The examiners felt that the specification/algorithms
were clear and well understood by most candidates. Perhaps with the exception of A4,
which was mainly avoided.

Those candidates that could write code tended to excel, gaining high marks overall, some
achieving the maximum mark.

The examiners would like to emphasise that a proficient command of programming is only
achieved by lots of practice in coding solutions to problems (for example on past papers)
in languages like Java, Python, JavaScript etc ideally using the many freely available
development frameworks and on-line tutorials.

Question no. comments

A1

This question had four parts and covered syllabus area 1.3 and
1.4. This was a popular question attracting about two thirds of
candidate attempts. Overall it yielded the best performing average
mark on Section A.

Part a) Most candidates could translate the algorithm into code.
Most of the marks were awarded on the checks and calculation
part of the algorithm. This required accurate translation of the
various conditions and calculations into actual program code (of
which Javascript, Java and Python were the most popular).
Minor errors in syntax were not penalised however there was a
small number of candidates who wrote code that resembled
pseudocode which was often a rewrite of the algorithm.

Inaccuracy in coding the calculations such as the component
wages and omitting the total wages was a common reason why
marks were lost in this part of the question.

Part b) Flowcharts have been present on the syllabus and in exam
papers for the last couple of years now, yet less than a half of all
candidates could accurately derive one from the given algorithm.

There was a lack of familiarity with the symbols and the level of
detail required in the flowchart. A minor point worth noting was to
feed back the outcome of the check for a valid number of hours
back to the start rather than to the end (of the program) to allow
the user to try again.

Part c) Only a small number of candidates fully answered this part.
Many candidates did not attempt it at all, or simply repeated the
code in part a). It was very important to provide four distinct
functions that mirrored the four steps of the algorithm otherwise
marks were lost.

It was also important to ensure functions had a return clause so
that the main program could work through each function call
otherwise marks were lost.

Part d) Almost all candidates showed a sufficient understanding of
why functions add significant value to coding practice.

Question no. comments

A2

This was the second most popular question in Section A and
contained three parts with part a) containing 4 equal subparts.

This question covered syllabus areas 3.1. 3.3. 3.4 1.1

Part a) Once again the examiner was concerned by the general
lack of coding knowledge especially the inability to apply iteration
using a “for loop” to access an array and manipulating the
contents such as doubling the value and filtering out positive
numbers.
Although the question didn’t ask candidates to supply sample data
for the array ,it was good practice to do this so that the examiner
could verify whether the code worked.

Part b) The structure and operation of Stacks and Queues were
familiar to most candidates. Examples of their use was often
omitted. The best examples related to computing rather than daily
human non-computing metaphors. Example a Stack is essential in
Recursion. A recursive function makes use of a call stack.” The
push method appends an item to the top of the stack, while the
pop method removes and returns the top item.

Part c) Again most candidates were familiar with binary search
also called a binary chop. A example that walked through the
process gained the highest marks. Some candidates wrote code
for a binary search. This was not required only a description of the
algorithm with an example.

Question no. comments

A3

This question was a fairly popular question answered by just under

half of candidates. It covered syllabus areas 4.1 3.3. However
the overall performance on this question was very

disappointing in comparison to questions A1 and A2. In
general answers were shallow and revealed a lack of
knowledge of coding, csv files and abstract data types.

Part a) was a coding question that many candidates didn’t attempt
or omitted the code that stored the answer to a file.

Part b) Sequential vs Random access was generally familiar but
many answers lacked detail and would have benefited from
example code that demonstrated an understanding of the
differences in accessing a file using random access (say hashing)
or sequentially (using iteration).

Part c) Again most candidates provided fairly superficial answers

mainly concerned with the flexibility of csv files but omitting

discussion of the structure and processing of data in a csv file

during export/import from apps. The best answers were from

candidates who had used csv files in practice often to populate

databases using spreadsheets or vice versa.

Part d) This part was also answered poorly by many candidates.

Some fairly superficial knowledge of ADT was apparent with many

candidates unfamiliar with abstract classes in OOP. Answers

needed to acknowledge that abstract classes are based on the

concept of abstract datatypes. Abstraction has the same meaning

in both imperative programming and OOP which involves hiding

low-level details with a simpler higher-level concepts whether data

or classes. However an abstract datatype is not necessarily an

OOP concept. An abstract class is different in that it provides

generalisation in OOP by providing a base class for inheritance.

Question no. comments

A4

This was a very unpopular question with only around 10% of
candidates attempts. The overall performance was poor only
slightly better that A3.

Part a) Nearly all candidates didn’t know where to start in devising
the logic for an algorithm to process Roman numerals. This
resulted in very low marks and possibly explains why most
candidates didn’t attempt this question.

Part b) This was the only part where reasonable attempts were
made. The main shortcoming was a lack of examples in program
code to illustrate how the various functions were applied in
practice.

Question no. comments

B5

This question asked candidates to develop an algorithm and

pseudocode to calculate the mean and the mean absolute

deviation for a set of numbers in a given data set. The question

was extremely unpopular. It seems likely that candidates were

daunted by the mathematical nature of the exercise. There were a

small number of very good answers from candidates familiar with

this type of statistical analysis.

Question no. comments

B6

This was a popular question with many candidates providing
good, clear answers. Most candidates made a good job of
Part (a) where they were asked to describe four advantages
of taking an object-oriented approach to programming.

Part (b) was less well-answered with many candidates not
understanding about the functional programming paradigm.
In their answer to Part (b) some candidates discussed the
use of functions in Python or Java rather than in pure
functional programming languages like Haskel.

Question no. comments

B7

Another popular question with many candidates gaining high
marks. Most candidates were able to describe the file format for

extensions *.jpg; *.pdf; *.html; *.csv; and *.txt. to gain a high
mark in Part (b).

Question no. comments

B8

This question was generally well-answered. Some candidates

listed features of good user interface design such as use of colour

and fonts instead of identifying GUI objects such as text fields,

drop-down boxes and so on.

Some of the answers to Part c) were a little rushed – to gain a top

mark candidates needed to think of clear design for a form rather

than a rough sketch.

Question no. comments

B9

There were some good answers to this question. Some candidates

spent a long-time answering Part (a) which was only worth 2 marks

presenting three sets of diagrams where one would have been

sufficient. The description of arrays and linked lists in Part (b) were

generally clear although some candidates did not attempt to

describe a linked list.

Question no. comments

B10

This question was less popular than I would have expected.

Relatively few candidates were able to present a flowchart that

fully addressed the problem statement but most candidates

understood what a flowchart is and were able to use the correct

notation.

Question no. comments

B11

This was a popular question. Most candidates were clear about the

difference between White Box and Black Box testing but less clear

in their discussion of unit testing vs functional testing and scripted

testing vs exploratory testing.

The answers to Part c) tended to be much shorter than the ones

for Parts (a) and (b) with most candidates saying very little about

exploratory testing.

Question no. comments

B12

Another popular question. As with the previous question,
candidates were generally able to give a full answer to Part
(a) discussing compilers vs Interpreters but were less clear
about the role of linkers vs loaders and parsers vs lexical
analysers.

