
Certified Tester Advanced Level
Test Management Syllabus

Version 3.0

International Software Testing Qualifications Board

Certified Tester

Advanced Level Test Management

V3.0 Page 2 of 87 2024/03/28

© International Software Testing Qualifications Board

Copyright Notice

Copyright Notice © International Software Testing Qualifications Board (hereinafter called ISTQB®)

ISTQB® is a registered trademark of the International Software Testing Qualifications Board.

Copyright © 2023, the authors for the update 3.0 are Horst Pohlmann (Product Owner, Vice Chair
AELWG), Tauhida Parveen, Francis Fenner, Laura Albert, Matthias Hamburg, Maud Schlich, Tanja
Tremmel, Ralf Bongard, Erik van Veenendaal, Jan Giessen, Bernd Freimut, Andreas Neumeister, Georg
Sehl, Rabi Arabi, Therese Kuhfuß, Ecaterina Irina Manole, Veronica Belcher, Kenji Onishi, Pushparajan
Balasubramanian, Meile Postuma and Miroslav Renda.

Copyright © 2010-2012 the authors for the Advanced Level Test Manager Sub Working Group: Rex Black
(Chair), Judy McKay (Vice Chair), Graham Bath, Debra Friedenberg, Bernard Homès, Kenji Onishi, Mike
Smith, Geoff Thompson, Tsuyoshi Yumoto.

All rights reserved. The authors hereby transfer the copyright to the ISTQB®. The authors (as current
copyright holders) and ISTQB® (as the future copyright holder) have agreed to the following conditions of
use:

Extracts, for non-commercial use, from this document may be copied if the source is
acknowledged. Any Accredited Training Provider may use this syllabus as the basis for a training
course if the authors and the ISTQB® are acknowledged as the source and copyright owners of
the syllabus and provided that any advertisement of such a training course may mention the
syllabus only after official Accreditation of the training materials has been received from an
ISTQB®-recognized Member Board.

Any individual or group of individuals may use this syllabus as the basis for articles and books, if
the authors and the ISTQB® are acknowledged as the source and copyright owners of the
syllabus.

Any other use of this syllabus is prohibited without first obtaining the approval in writing of the
ISTQB®.

Any ISTQB®-recognized Member Board may translate this syllabus provided they reproduce the
abovementioned Copyright Notice in the translated version of the syllabus.

Certified Tester

Advanced Level Test Management

V3.0 Page 3 of 87 2024/03/28

© International Software Testing Qualifications Board

Revision History

Version Date Remarks

ISEB v1.1 2001/09/04 ISEB Practitioner Syllabus

ISTQB 1.2E 2003/09 ISTQB Advanced Level Syllabus from EOQ-SG

V2007 2007/10/12 Certified Tester Advanced Level syllabus version 2007

D100626 2010/06/10 Incorporation of changes as accepted in 2009, separation of each
chapter for the separate modules

D101227 2010/12/10 Acceptance of changes to format and corrections that have no
impact on the meaning of the sentences.

D2011 2011/10/31 Change to split syllabus, re-worked LOs and text changes to
match LOs. Addition of BOs.

Alpha 2012 2012/02/09 Incorporation of all comments from NBs received from October
release.

Beta 2012 2012/03/26 Incorporation of comments from NBs received on time from Alpha
release.

Beta 2012 2012/04/07 Beta version submitted to GA

Beta 2012 2012/06/08 Copy edited version released to NBs

Beta 2012 2012/06/27 EWG and Glossary comments incorporated

RC 2012 2012/08/15 Release candidate version – final NB edits included

Beta v3.0 2023/10/31 Incorporation of all comments from member boards received for all
sections (BOIncs) from the Alpha review

POST Beta v3.0 2024/01/31 Incorporation of all comments from member boards received for all
sections (BOIncs) from the Beta review

POST Beta v3.0 2024/02/29 Minor modifications in proofreading

RC v3.0 2024/03/28 Release candidate version – latest formal template changes
included as proposed by PWG

Certified Tester

Advanced Level Test Management

V3.0 Page 4 of 87 2024/03/28

© International Software Testing Qualifications Board

Table of Contents

Copyright Notice ... 2

Revision History ... 3

Table of Contents ... 4

Acknowledgements .. 8

0 Introduction .. 10

0.1 Purpose of this Syllabus .. 10

0.2 The Certified Tester Advanced Level Test Management in Testing ... 10

0.3 Career Path for Testers ... 10

0.4 Business Outcomes ... 11

0.5 Examinable Learning Objectives and Cognitive Level of Knowledge 11

0.6 The Advanced Level Test Management Certificate Exam .. 12

0.7 Accreditation .. 12

0.8 Handling of Standards ... 12

0.9 Level of Detail .. 12

0.10 How this Syllabus is Organized ... 13

0.11 What are the Fundamental Assumptions of this Syllabus? ... 14

1 Managing the Test Activities – 750 minutes .. 16

1.1 The Test Process ... 18

1.1.1 Test Planning Activities ... 18

1.1.2 Test Monitoring and Control Activities ... 19

1.1.3 Test Completion Activities ... 20

1.2 The Context of Testing .. 21

1.2.1 Test Stakeholders ... 21

1.2.2 Importance of Stakeholders’ Knowledge in Test Management ... 21

1.2.3 Test Management in a Hybrid Software Development Model ... 22

1.2.4 Test Management Activities for Various Software Development Lifecycle Models 23

1.2.5 Test Management Activities at Various Test Levels ... 24

1.2.6 Test Management Activities for Different Test Types ... 25

Certified Tester

Advanced Level Test Management

V3.0 Page 5 of 87 2024/03/28

© International Software Testing Qualifications Board

1.2.7 Test Management Activities to Plan, Monitor, and Control ... 26

1.3 Risk-Based Testing .. 28

1.3.1 Testing as a Risk Mitigation Activity .. 28

1.3.2 Identification of Quality Risks .. 28

1.3.3 Quality Risk Assessment ... 29

1.3.4 Quality Risk Mitigation Through Appropriate Testing .. 30

1.3.5 Techniques for Risk-Based Testing .. 31

1.3.6 Success Metrics and Difficulties Associated with Risk-Based Testing 32

1.4 The Project Test Strategy .. 34

1.4.1 Choosing a Test Approach .. 34

1.4.2 Analyzing the Organizational Test Strategy, Project Context and Other Aspects 34

1.4.3 Definition of Test Objectives .. 36

1.5 Improving the Test Process ... 38

1.5.1 The Test Improvement Process (IDEAL) .. 38

1.5.2 Model-Based Test Process Improvement ... 39

1.5.3 Analytical-Based Test Process Improvement Approach ... 40

1.5.4 Retrospectives ... 41

1.6 Test Tools .. 42

1.6.1 Good Practices for Tool Introduction ... 42

1.6.2 Technical and Business Aspects for Tool Decisions... 43

1.6.3 Selection Process Considerations and Return on Investment Evaluation 43

1.6.4 Tool Lifecycle... 45

1.6.5 Tool Metrics ... 45

2 Managing the Product – 390 minutes.. 47

2.1 Test Metrics ... 48

2.1.1 Metrics for Test Management Activities .. 48

2.1.2 Monitoring, Control and Completion .. 49

2.1.3 Test Reporting ... 50

2.2 Test Estimation .. 52

2.2.1 Estimating What Activities Testing Will Involve ... 52

2.2.2 Factors Which May Influence Test Effort .. 52

Certified Tester

Advanced Level Test Management

V3.0 Page 6 of 87 2024/03/28

© International Software Testing Qualifications Board

2.2.3 Selection of Test Estimation Techniques .. 53

2.3 Defect Management .. 55

2.3.1 Defect Lifecycle ... 55

2.3.2 Cross-functional Defect Management ... 57

2.3.3 Specifics of Defect Management in Agile Teams .. 57

2.3.4 Defect Management Challenges in Hybrid Software Development 58

2.3.5 Defect Report Information ... 59

2.3.6 Defining Process Improvement Actions Using Defect Report Information............................ 60

3 Managing the Team – 225 minutes ... 62

3.1 The Test Team .. 63

3.1.1 Typical Skills within Four Areas of Competence ... 63

3.1.2 Analyze Required Test Team Member Skills .. 64

3.1.3 Assessing Test Team Member Skills .. 65

3.1.4 Developing Test Team Member Skills .. 66

3.1.5 Management Skills Required to Manage a Test Team ... 66

3.1.6 Motivating or Demotivating Factors for a Test Team in Certain Situations 67

3.2 Stakeholder Relationships ... 68

3.2.1 Cost of Quality ... 68

3.2.2 Cost-benefit Relationship of Testing ... 68

4 References .. 71

Standards .. 71

ISTQB® Documents .. 71

Books ... 71

Articles ... 72

Web Pages ... 72

5 Appendix A – Learning Objectives/Cognitive Level of Knowledge ... 73

Level 1: Remember (K1) ... 73

Level 2: Understand (K2) .. 73

Level 3: Apply (K3) ... 74

Level 4: Analyze (K4) .. 74

6 Appendix B – Business Outcomes Traceability Matrix with Learning Objectives 75

Certified Tester

Advanced Level Test Management

V3.0 Page 7 of 87 2024/03/28

© International Software Testing Qualifications Board

7 Appendix C – Release Notes .. 82

8 Appendix D – Domain-Specific Keywords ... 84

9 Appendix E – Trademarks ... 85

10 Index .. 86

Certified Tester

Advanced Level Test Management

V3.0 Page 8 of 87 2024/03/28

© International Software Testing Qualifications Board

Acknowledgements

This document was formally released by the General Assembly of the ISTQB® on <date>

It was produced by a team from the International Software Testing Qualifications Board: Horst Pohlmann
(Product Owner, Vice Chair AELWG), Tauhida Parveen, Francis Fenner, Laura Albert, Matthias
Hamburg, Maud Schlich, Tanja Tremmel, Ralf Bongard, Erik van Veenendaal, Jan Giessen, Bernd
Freimut, Andreas Neumeister, Georg Sehl, Rabi Arabi, Therese Kuhfuß, Ecaterina Irina Manole, Veronica
Belcher, Kenji Onishi, Pushparajan Balasubramanian, Meile Postuma and Miroslav Renda.

The team thanks Gary Mogyorodi for his technical review (in Beta), Julia Sabatine for her proofreading,
the review team and the Member Boards for their suggestions and input.

The following persons participated in the reviewing, commenting, and balloting of this syllabus:

Alpha reviews: Benjamin Timmermans, Mattijs Kemmink, Rik Marselis, Jean-Francois Riverin, Gary
Mogyorodi, Ralf Bongard, Ingvar Nordström, Yaron Tsubery, Imre Mészáros, Mattijs Kemmink, Ádám
Bíró, Ramit M Kaul, Chinthaka Indikadahena, Darvay Tamás Béla, Beata Karpinska, Young jae Choi,
Stuart Reid, Tal Pe'er, Meile Posthuma, Daniel van der Zwan, Klaudia Dussa-Zieger, Jörn Münzel, Ralf
Bongard, Petr Neugebauer, Derk-Jan de Grood, Rik Kochuyt, Andreas Hetz, Laura Albert, Eszter
Sebestyeni, Tamás Szőke, Henriett Braunné Bokor, Ágota Horváth, Péter Sótér, Ferenc Hamori, Darvay
Tamás Béla, Paul Weymouth, Lloyd Roden, Kevin Chen, Huang qin, Pushparajan Balasubramanian,
Szilard Szell, Tamas Stöckert, Lucjan Stapp, Adam Roman, Anna Miazek, Márton Siska, Erhardt
Wunderlich, László Kvintovics, Murian Song, Mette Bruhn-Pedersen, Petra Schneider, Michael Stahl,
Ramit M Kaul, Imre Mészáros, Dilhan Jayakody, Francisca Cano Ortiz, Johan Klintin, Liang Ren, Ole Chr.
Hansen, Zsolt Hargitai, Tamás Rakamazi, Kenji Onishi, Arnika Hryzszko, Rabih Arabi, Veronica Belcher,
and Vignesh Balasubramanian.

Beta reviews: Maria-Therese Teichmann, Dominik Weber, Thomas Puffler, Peter Kunit, Martin Klonk,
Michaël Pilaeten, Wim Decoutere, Arda Ender Torçuk, Piet de Roo, Rik Marselis, Jakub Platek, Ding
Guofu, Zheng Dandan, Liang Ren, Yifan Chen, Hallur Helmsdal, Ole Chr. Hansen, Klaus Skafte, Gitte
Ottosen, Tanzeela Gulzar, Arne Becher, Klaudia Dussa-Zieger, Jan Giesen, Florian Fieber, Carsten
Weise, Arnd Pehl, Matthias Hamburg, Stephanie Ulrich, Jürgen Beniermann, Márton Siska, Sterbinszky
Ádám, Ágnes Srancsik, Marton Matyas, Tamas Stöckert, Csilla Varga, Zsolt Hargitai, Bíró Ádám, Horváth
Ágota, Sebestyéni Eszter, Szilárd Széll, Péter Sótér, Giancarlo Tomasig, Nicola de Rosa, Kaiwalya
Katyarmal, Pradeep Tiwari, Sreeja Padmakumari, Seunghee Choi, Stuart Reid, Dmitrij Nikolajev, Mantas
Aniulis, Monika Stoecklein-Olsen, Adam Roman, Mahmoud Khalaili, Ingvar Nordström, Beata Karpinska,
Armin Born, Ferdinand Gramsamer, Mergole Kuaté, Thomas Letzkus, Nishan Portoyan, Ainsley Rood,
Lloyd Roden, Sarah Ireton.

The Advanced Test Manager Syllabus 2010-2012 was produced by a core team from the International
Software Testing Qualifications Board Advanced Level Sub Working Group - Advanced Test Manager:
Rex Black (Chair), Judy McKay (Vice Chair), Graham Bath, Debra Friedenberg, Bernard Homès, Paul
Jorgensen, Kenji Onishi, Mike Smith, Geoff Thompson, Erik van Veenendaal, Tsuyoshi Yumoto.

The core team thanks the review team and the National Boards for their suggestions and input.

At the time the Advanced Level Syllabus was completed the Advanced Level Working Group had the
following membership (alphabetical order):

Graham Bath, Rex Black, Maria Clara Choucair, Debra Friedenberg, Bernard Homès (Vice Chair), Paul
Jorgensen, Judy McKay, Jamie Mitchell, Thomas Mueller, Klaus Olsen, Kenji Onishi, Meile Posthuma,

Certified Tester

Advanced Level Test Management

V3.0 Page 9 of 87 2024/03/28

© International Software Testing Qualifications Board

Eric Riou du Cosquer, Jan Sabak, Hans Schaefer, Mike Smith (Chair), Geoff Thompson, Erik van
Veenendaal, Tsuyoshi Yumoto.

The following persons participated in the reviewing, commenting, and balloting of this syllabus:

Chris van Bael, Graham Bath, Kimmo Hakala, Rob Hendriks, Marcel Kwakernaak, Rik Marselis, Don
Mills, Gary Mogyorodi, Thomas Mueller, Ingvar Nordstrom, Katja Piroué, Miele Posthuma, Nathalie
Rooseboom de Vries, Geoff Thompson, Jamil Wahbeh, Hans Weiberg.

Certified Tester

Advanced Level Test Management

V3.0 Page 10 of 87 2024/03/28

© International Software Testing Qualifications Board

0 Introduction

0.1 Purpose of this Syllabus

This syllabus forms the basis for the International Software Testing Qualification at the Advanced Level
for Test Management. The ISTQB® provides this syllabus as follows:

1. To member boards, to translate into their local language and to accredit training providers.
Member boards may adapt the syllabus to their particular language needs and modify the
references to adapt to their local publications.

2. To certification bodies, to derive examination questions in their local language adapted to the
learning objectives for this syllabus.

3. To ISTQB® accredited training providers, to produce courseware and determine appropriate
teaching methods.

4. To certification candidates, to prepare for the certification exam (ISTQB® recommends taking an
ISTQB® accredited training prior to attend an ISTQB® Advanced Level exam.)

5. To the international software and systems engineering community, to advance the profession of
software and systems testing, and as a basis for books and articles.

0.2 The Certified Tester Advanced Level Test Management in Testing

This Advanced Level qualification is aimed at anyone involved in the management of software testing.
This includes people in roles such as testers, test consultants, test managers, user acceptance testers,
scrum masters, project managers or product owners. This Advanced Level Test Management
qualification is also appropriate for anyone who wants an advanced understanding of software testing
such as project managers, quality managers, software development managers, business analysts, IT
directors and management consultants. Holders of the Advanced Level Test Management Certificate will
be able to go on to the ISTQB® Expert Level software testing qualifications. The ISTQB® Certified Tester
Advanced Level – Test Manager or Test Management certificate is valid for life and does not require
renewal. The certificate is recognized internationally and demonstrates the candidates’ professional
competence and credibility in test management.

0.3 Career Path for Testers

The ISTQB® scheme provides support for testing professionals at all stages of their careers. Individuals who

achieve the ISTQB® Certified Tester Advanced Level Test Management Certification may also be interested

in the other Core Advanced Level certifications (i.e., Test Analyst and Technical Test Analyst) and thereafter

the ISTQB® Expert Level certifications (i.e., Test Management or Improving the Test Process). Anyone

seeking to develop skills in testing within Agile software development can consider the Agile Technical

Tester or Agile Test Leadership at Scale certifications. The Specialist stream offers a deep dive into areas

that have specific test approaches and test activities (e.g., in Test Automation, AI Testing, or Mobile App

Testing), or cluster testing know-how for certain industry domains (e.g., Automotive or Gaming). Please visit

www.istqb.org for the latest information of ISTQB®´s Certified Tester Scheme.

https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.istqb.org%2F&data=05%7C01%7Cfilipe.carlos%40innowave.tech%7Cb1ee83ff6521424c792908da440ce915%7C726174dc30ab40e185fc60cda0e0bd81%7C0%7C0%7C637897119663377885%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Sgv6mR7KzlIIQ6MFZ0cBRVv6yEoTekNJEqwFQ7M%2Bx7M%3D&reserved=0

Certified Tester

Advanced Level Test Management

V3.0 Page 11 of 87 2024/03/28

© International Software Testing Qualifications Board

0.4 Business Outcomes

This section lists the eleven Business Outcomes expected of a candidate who has achieved the
Advanced Level Test Management certification.

An Advanced Level Test Management Certified Tester can…

TM_01 Manage testing in various software development projects by applying test management
processes established for the project team or test organization

TM_02 Identify test stakeholders and software development lifecycle models that are relevant in
a given context

TM_03 Organize risk identification and risk assessment sessions within any software
development lifecycle and use the results to guide testing to meet the test objectives

TM_04 Define a project test strategy consistent with the organizational test strategy and project
context

TM_05 Continuously monitor and control testing to achieve project goals

TM_06 Assess and report test progress to project stakeholders

TM_07 Identify necessary skills and develop those skills within your team

TM_08 Prepare and present a business case for testing in different contexts that outlines the
costs and expected benefits

TM_09 Lead test process improvement activities in projects or software development product
streams and contribute to organizational test process improvement initiatives

TM_10 Plan the test activities including the required test infrastructure and estimate the effort
required to test

TM_11 Create defect reports and a defect workflow suitable for a software development lifecycle

0.5 Examinable Learning Objectives and Cognitive Level of Knowledge

Learning objectives support business outcomes and are used to create the Certified Tester Advanced
Test Management exams.

In general, all contents of this syllabus are examinable at a K1 level, except for the Introduction,
References, Epilogue and Appendices. That is, the candidate may be asked to recognize, remember, or
recall a keyword or concept mentioned in any of the three chapters in this syllabus. The specific learning
objectives and corresponding levels are shown at the beginning of each chapter, and classified as
follows:

• K2: Understand

• K3: Apply

• K4: Analyze

Further details and examples of learning objectives are given in Appendix A.

All terms listed as keywords right under chapter headings shall be remembered (K1), even if not explicitly
mentioned in the learning objectives.

Certified Tester

Advanced Level Test Management

V3.0 Page 12 of 87 2024/03/28

© International Software Testing Qualifications Board

0.6 The Advanced Level Test Management Certificate Exam

The Advanced Level Test Management Certificate exam is based on this syllabus. Answers to exam
questions may require the use of material based on more than one section of this syllabus. All sections of
the syllabus are examinable, except for the Introduction, Appendices and References. Standards and
books are included as references (Chapter 5), but their content, beyond what is summarized in the
syllabus itself from such standards and books, is not examinable

Refer to the ´Exam Structures and Rules 1.1 Compatible with Syllabus Foundation and Advanced Levels
and Specialists Modules` document for further details.

• The entry criterions for taking the Advanced Level Test Management Certificate exam are:

o Candidates hold the ISTQB® Foundation Level Certificate before taking the Advanced
Level Test Management certification exam. However, it is strongly recommended that the
candidate has at least a minimal background in either software development or software
testing, such as six months experience as a tester or as a software developer.

o Completion of a course that has been accredited to ISTQB® standards (by one of the
ISTQB®-recognized member boards).

0.7 Accreditation

An ISTQB® Member Board may accredit training providers whose course material follow this syllabus.
Training providers should obtain accreditation guidelines from the Member Board or body that performs
the accreditation. An accredited course is recognized as conforming to this syllabus and is allowed to
have an ISTQB® exam as part of the course.

The accreditation guidelines for this syllabus are the generic Accreditation Guidelines published by the
Processes Management and Compliance Working Group of the ISTQB®.

0.8 Handling of Standards

There are standards referenced in the Advanced Level Test Management Syllabus (e.g., ISO, IEC, and
IEEE). The purpose of these references is to provide a framework or to provide a source of additional
information if desired by the reader. Please note that the syllabus uses these standards as references.
The standards are not intended for examination. Refer to Chapter 5 References for more information
regarding standards.

0.9 Level of Detail

The level of detail in this syllabus allows internationally consistent courses and exams. To achieve this
goal, the syllabus consists of:

• General instructional objectives describing the intention of the Advanced Level Test Management
Syllabus

• A list of keywords that students must be able to recall

• Learning objectives for each knowledge area, describing the cognitive learning outcome to be
achieved

Certified Tester

Advanced Level Test Management

V3.0 Page 13 of 87 2024/03/28

© International Software Testing Qualifications Board

• A description of the key concepts, including references to sources such as accepted literature or
standards

The syllabus content is not a description of the entire knowledge area of software testing; it reflects the
level of detail to be covered in Advanced Level Test Management training courses. It focuses on test
concepts and test techniques that can be applied to all software projects.

0.10 How this Syllabus is Organized

There are three chapters with examinable content. The top-level heading for each chapter specifies the
minimum time required for accredited training courses to cover the chapter contents; timing is not
provided below chapter level. For accredited training courses, the syllabus requires a minimum of 22.75
hours of instruction, distributed over the three chapters as follows:

• Chapter 1: Managing the Test Activities (750 minutes)

o The participant learns to explain the test management activities (i.e., test planning, test
monitoring, test control, and test completion)

o The participant learns to define a project test strategy including the test objectives and
selecting the proper test approach consistent with the organizational test strategy and the
project context

o The participant learns to manage projects in various contexts

o The participant learns to apply risk-based testing to focus testing on the identified risks

o The participant learns to lead the test process improvement activities by conducting a
project or iteration retrospective

o The participant learns how to improve tool support for testing by taking into consideration
the risks, costs, and benefits of tool support

• Chapter 2: Managing the Product (390 minutes)

o The participant learns how to monitor and control testing to meet test objectives using
test metrics and to assess and report the test progress

o The participant learns to select proper test estimate techniques at different subsidiaries
following different software development models

o The participant learns how to define a defect workflow within defect management to fit
sequential, Agile, and hybrid software development models

• Chapter 3: Managing the Team (225 minutes)

o The participant learns how to analyze a given project context to identify the skills required
by the test team

o The participant learns to manage a team according to the whole team approach

o The participant learns how to define a business case for the testing activities in the project

Note: For each learning objective exists in the current syllabus a corresponding subsection with content
(e.g. for LO-1.2.3 exists a subsection 1.2.3).

Certified Tester

Advanced Level Test Management

V3.0 Page 14 of 87 2024/03/28

© International Software Testing Qualifications Board

0.11 What are the Fundamental Assumptions of this Syllabus?

This syllabus is intended for anyone who wants to achieve an advanced level of competence in test
management, such as test managers, test analysts, test engineers, test consultants, test coordinators,
test leaders, and project managers. The syllabus is aligned with the ISTQB® Foundation Level Syllabus
V.4, which provides the basic knowledge and understanding of software testing.

This syllabus covers two main roles in testing: the test management role and the testing role. The test
management role is also known as the test manager in the context of sequential development model
context, where the test manager is typically a separate role from the project manager or the product
owner. The test management role is responsible for the overall test process, the test team, and test
management. This includes defining the test strategy, planning the test activities, monitoring and
controlling the test progress, reporting the test results, and managing the test risks and issues. The test
management role also ensures that test objectives are aligned with the business and stakeholder needs,
and that test activities are coordinated with other project stakeholders.

The testing role also performs test evaluation, defect management, and test closure activities. The testing
role uses various testing techniques to ensure the quality and reliability of the test artifacts and the
system under test. The testing role also uses test tools and automation to support the test process and
improve the test efficiency and effectiveness. The activities and tasks assigned to these roles may vary
depending on the context, such as the project, product, skills, and organization. (see the ISTQB®
Foundation Level Syllabus V.4).

The term test team member is used in this syllabus to refer to any person in a test management or testing
role who performs testing, regardless of the organizational context and other roles. Test teams are
composed of individuals with different skills and competencies. Team members may also have varying
levels of experience and certification, such as foundation level, advanced level, or expert level. Test team
members may also have different roles and responsibilities depending on the test approach and the test
process model used, such as Agile testing, model-based testing, risk-based testing, etc.

An important point about the perspective that the syllabus provides is the fact that it focuses on test
management at the project level and not test management at the organizational level. Therefore, this
syllabus conforms to and contains information that can be used for project-level test management
activities, but less so for test management at organizational level.

Hybrid software development is used in this syllabus to refer to a software development approach that
combines elements of different software lifecycle models, such as the V-model, Iterative, Incremental, and
Agile. Hybrid software development aims to leverage the strengths and mitigate the weaknesses of each
model, depending on the context and needs of the project. For example, a hybrid software development
approach may use a V-model model for the initial planning and requirements analysis phases, followed
by an Agile model for the design, development, and testing phases. Alternatively, a hybrid software
development approach may use an iterative model for the overall project management, while applying an
incremental model for each iteration, and an Agile model for each increment. Hybrid software
development requires an elevated degree of flexibility, communication, and collaboration among the
stakeholders, as well as a clear understanding of the goals, risks, and constraints of each phase and
model.

According to this syllabus and the Glossary, a test strategy is a description of how testing will be
performed in order to achieve test objectives under given circumstances. A test strategy defines the
overall scope, approach, and resources for testing a system or a product. It is typically documented in a
test plan or as part of other documents, depending on the context of the testing. A test strategy is
influenced by the organizational test strategy, which is a high-level test strategy that describes how

Certified Tester

Advanced Level Test Management

V3.0 Page 15 of 87 2024/03/28

© International Software Testing Qualifications Board

testing is done in an organization. A test strategy may also exist for a single test level or a test type, which
are specific aspects of testing that focus on different objectives, targets, and criteria. The generic term
“test strategy” can be used in any context (project, organization, product). A test approach is the manner
in which testing tasks are implemented, especially the selection and combination of test levels, test types,
and test techniques for static and dynamic testing, as well as other test practices such as scripted testing,
manual testing, back-to-back testing, etc. The test approach chosen by the test management role is a key
decision in formulating an appropriate test strategy for a given context.

Certified Tester

Advanced Level Test Management

V3.0 Page 16 of 87 2024/03/28

© International Software Testing Qualifications Board

1 Managing the Test Activities – 750 minutes

Keywords

experience-based testing, functional testing, hybrid software development model, incremental
development model, iterative development model, non-functional testing, product risk, quality risk,
retrospective, risk analysis, risk assessment, risk identification, risk impact, risk level, risk likelihood, risk
management, risk mitigation, risk monitoring, risk-based testing, sequential development model,
S.M.A.R.T goal methodology, software development lifecycle, test completion, test control, test level, Test
Maturity Model integration, test monitoring, test objective, test plan, test planning, test process
improvement, test strategy, test type, TPI NEXT

Domain Specific Keywords

goal question metric (GQM), IDEAL, indicator, measure, metric

Learning Objectives for Chapter 1:

1.1 The Test Process

TM-1.1.1 (K2) Summarize test planning

TM-1.1.2 (K2) Summarize test monitoring and test control

TM-1.1.3 (K2) Summarize test completion

1.2 The Context of Testing

TM-1.2.1 (K2) Compare why different stakeholders are interested in testing

TM-1.2.2 (K2) Explain why stakeholders' knowledge is important in test management

TM-1.2.3 (K2) Explain testing in a hybrid software development model

TM-1.2.4 (K2) Summarize test management activities for various software development lifecycles

TM-1.2.5 (K2) Compare test management activities at various test levels

TM-1.2.6 (K2) Compare test management activities for various test types

TM-1.2.7 (K4) Analyze a given project and determine test management activities that emphasize test
planning, test monitoring, and test control

1.3 Risk-Based Testing

TM-1.3.1 (K2) Explain the various measures that risk-based testing takes in order to respond to risks

TM-1.3.2 (K2) Give examples of different techniques a test manager can use for identifying risks
related to product quality

TM-1.3.3 (K2) Summarize the factors that determine the risk levels related to product quality

TM-1.3.4 (K4) Select appropriate test activities to mitigate risks according to their risk level in a given
context

Certified Tester

Advanced Level Test Management

V3.0 Page 17 of 87 2024/03/28

© International Software Testing Qualifications Board

TM-1.3.5 (K2) Differentiate between heavyweight and lightweight examples of risk-based testing
techniques

TM-1.3.6 (K2) Give examples of success metrics and difficulties associated with risk-based testing

1.4 The Project Test Strategy

TM-1.4.1 (K2) Explain typical choices for a test approach

TM-1.4.2 (K4) Analyze an organizational test strategy and the project context to select the appropriate
test approach

TM-1.4.3 (K3) Use the S.M.A.R.T. goal methodology to define measurable test objectives and exit
criteria

1.5 Improving the Test Process

TM-1.5.1 (K2) Explain how to use the IDEAL model for test process improvement on a given project

TM-1.5.2 (K2) Summarize the model-based improvement approach to test process improvement and
understand how to apply it on a project context

TM-1.5.3 (K2) Summarize the analytical-based improvement approach to test process improvement
and understand how to apply it on a project context

TM-1.5.4 (K3) Implement a project or iteration retrospective to evaluate test processes and discover
testing areas to improve

1.6 Test Tools

TM-1.6.1 (K2) Summarize the best practices for tool introduction

TM-1.6.2 (K2) Explain the impact of different technical and business aspects when deciding on a tool
type

TM-1.6.3 (K4) Analyze a given situation to create a plan for tool selection, covering risks, costs, and
benefits

TM-1.6.4 (K2) Differentiate among the stages of the tool lifecycle

TM-1.6.5 (K2) Give examples for metric collection and evaluation by using tools

Certified Tester

Advanced Level Test Management

V3.0 Page 18 of 87 2024/03/28

© International Software Testing Qualifications Board

1.1 The Test Process

Introduction

The ISTQB® Certified Tester Foundation Level Syllabus V.4 describes a test process that includes the
following activities: test planning, test monitoring and control, test analysis, test design, test
implementation, test execution, and test completion.

The ISTQB® Foundation Level Syllabus V.4 states that these activities in the test process are often
implemented iteratively or in parallel, depending on the Software Development Lifecycle (SDLC) model
and the project context. Tailoring these activities within the context of the product and the project is
usually required.

In this syllabus, the focus is on the following key test management activities:

• Test planning: defining the test objectives, test approach, test scope, test resources, test
schedule, test deliverables and test participants (test stakeholders).

• Test monitoring and control: tracking the test progress, test results and test deviations; taking
corrective actions when necessary; reporting the test status and outcomes to relevant
stakeholders.

• Test completion: finalizing and archiving the test artifacts, evaluating the test process and the
test product, identifying the test process improvement actions, and communicating the test
closure to relevant stakeholders.

The ISO/IEC/IEEE 29119-2 standard defines the test management processes that cover these test
management activities. These test management processes can be applied at different levels of testing
such as project, program, or portfolio. Each level of testing can have its own test plan that aligns with the
higher level test plan.

1.1.1 Test Planning Activities

This section focuses on the activities for planning tests for different scopes such as the entire project, a
test level, a test type, or a release/iteration/sprint in Agile. Depending on the scope, test planning may
begin and end at different points in the development process. Test planning is an activity that involves
identifying the activities and resources required to achieve the test objectives identified in the test policy.
Test planning should be initiated as early as possible in the development process, preferably before
requirements are identified, and should be updated as the project progresses. Test planning is often an
iterative process that requires re-planning during the project to accommodate changes and feedback.

The following tasks are part of test planning (similar to those found in the ISO/IEC/IEEE 29119-2):

• Understand the context and organize test planning
Understanding the context of the organization (e.g., the test policy and the organizational test
strategy), the scope of the test, and the test item (i.e., the work product being tested) is critical to
test planning. (see Section 1.2., The Context of Testing). This also involves all activities needed
to organize the test plan development and to obtain approval of those activities and the schedule
by the stakeholders (e.g., the product owner, the project manager, or the development team
manager).

• Identify and analyze product risks
Risk analysis involves identifying and assessing the potential impact and likelihood of product

Certified Tester

Advanced Level Test Management

V3.0 Page 19 of 87 2024/03/28

© International Software Testing Qualifications Board

risks as part of test planning. See Section 1.3 of this syllabus, Risk-Based Testing, for further
details about product risks.

• Identify risk treatment approaches
Based on the risk analysis, the appropriate risk treatment approaches are selected and
documented in the test plan. These may include preventive, corrective, or mitigating actions to
address the identified risks.

• Define test approach and estimate and allocate test resources
Based on the organizational test strategy, regulatory standards, any constraints given by the
project, and the risk treatment approaches, the test approach is defined for the current scope of
testing (see Section 1.4, The Project Test Strategy). When a test approach is defined, it is
important to estimate the required test resources such as test staff, test tools, test environments,
and test data, and to allocate those resources to the test activities.

• Establish the test plan
The test plan must be accepted by all stakeholders, and therefore, disagreements between them
should be settled.

1.1.2 Test Monitoring and Control Activities

In order for Test Management to provide efficient test control, a testing schedule and monitoring
framework must be established to enable tracking of the status and progress of testing. This framework
should include the detailed measures and targets that are required to relate the status of test work
products and resources to the plan and strategic objectives.

For small and less complex projects, it may be relatively easy to relate test work products and activities to
the plan and strategic objectives, but generally more detailed objectives must be defined to achieve this.
This can include defining measures and targets that are required to meet test objectives and coverage of
the test basis.

Of particular importance is the need to relate the status of test work products and activities in a manner
that is understandable and relevant to the project and business stakeholders.

Test monitoring and control are ongoing activities.

Test control compares actual progress against the test plan and implements corrective actions as
needed. It guides the testing to meet the test strategies and objectives (see Section 1.4, The Project Test
Strategy), and revisits the test planning activities when necessary. The control data requires detailed test
planning information for appropriate reactions. This activity involves:

• Implementing the test plan and control directives

• Managing deviations from planned testing

• Treating newly identified and changed risks

• Establishing readiness to begin testing

• Granting and obtaining approval for test completion based on the exit criteria

Test monitoring involves collecting and recording test results, identifying deviations from planned testing,
identifying and analyzing new risks that require testing, and monitoring changes for identified risks.

Certified Tester

Advanced Level Test Management

V3.0 Page 20 of 87 2024/03/28

© International Software Testing Qualifications Board

1.1.3 Test Completion Activities

Test completion usually occurs at project milestones (e.g., a release, the end of an iteration, or at test
level completion). For any unresolved defects, change requests or product backlog items are created.
See the ISTQB® Foundation Level Syllabus V.4. Once exit criteria are met, the key outputs should be
captured, archived and provided to the relevant stakeholders. Test completion requires the following
tasks:

• Create and approve the test completion report
This task ensures that all testing has been accomplished and all test objectives have been met.
This task involves collecting relevant information from various testware such as test plans, test
results, test progress reports, test completion reports, and defect reports. The collected
information is evaluated and summarized in the test completion report. The test completion report
is approved and communicated to relevant stakeholders.

• Archive testware
This task identifies testware that can be useful in the future or expected to be reused, which are
typically test cases. It makes them accessible and easy to understand for future reuse. In
addition, test results, test logs, test reports, and other testware should temporarily be archived in
the configuration management system.

• Handover testware
This task delivers valuable work products to those who need them. For example, known defects
deferred or accepted should be communicated to those who will use, or support the use of
testware.

• Perform all necessary tasks to clean the test environment and to restore it to a pre-defined
state
This task ensures that the test environment is ready for the next testing cycle or project. It
involves removing any test data, test tools, test drivers, test stubs, and test scripts from the test
environment. It also involves restoring the test environment to its original or desired state.

• Perform/collect/document lessons learned
This task is performed in retrospectives where important lessons learned during the test process
are discussed and documented. This may include findings for the entire software development
lifecycle (SDLC). The lessons learned can be used for test process improvement, as described in
Section 1.5.of this syllabus, Improving the Test Process.

Certified Tester

Advanced Level Test Management

V3.0 Page 21 of 87 2024/03/28

© International Software Testing Qualifications Board

1.2 The Context of Testing

Introduction

The context of testing encompasses the unique conditions and constraints that influence the test process,
shaping the decisions and strategies for planning, designing, and executing tests. It is vital for test
managers to grasp this context in order to align testing with the specific needs and objectives of the
software development project. This context may differ based on the product type, industry, regulatory
requirements, and crucially, the software development life cycle (SDLC) being employed.

Test managers are tasked with applying established test strategies and choosing test techniques rather
than developing them. They play a key role in formulating test plans that are tailored to the project's
context. By understanding and considering these various factors, test managers can ensure that the
testing is pertinent, effective, and efficient in meeting the test objectives.

1.2.1 Test Stakeholders

Test stakeholders are individuals or groups with a direct or indirect interest in the product's quality. Below
is a typical list of potential stakeholders, amended to reflect their diverse interests in testing:

• Developers, Development Leads, and Development Managers: In addition to implementing
the system under test and acting on test results, these stakeholders are also involved in unit
testing and contributing to the testing process.

• Testers, Test Leads, and Test Managers: These individuals prepare testware, which includes
developing test plans and contributing to the testing process through activities such as
requirements analysis, test design, test execution, defect tracking and reporting, test automation,
and test progress reporting.

• Project Managers, Product Owners, and Business Users: They specify requirements, define
the requested level of quality, and recommend required coverage based on perceived risks. They
also review work products, participate in User Acceptance Testing (UAT), and make decisions
based on test results.

• Operations Team: Engaged in operational acceptance testing, they ensure the system's
readiness for production and contribute to defining non-functional requirements.

• Customers and Users: Customers purchase the product, while users directly utilize it. Both are
key in defining requirements and should be involved in User Acceptance Testing (UAT) to
validate that the product meets their needs.

This list does not include every potential stakeholders. Test managers must conduct a stakeholder
analysis as part of creating the test strategy and test plan, considering the test scope in identifying
specific stakeholders for their project.

1.2.2 Importance of Stakeholders’ Knowledge in Test Management

In test management, it is crucial to consider the perspectives and influence of various stakeholders. The
stakeholder matrix, often referred to as the power-interest matrix, guides test managers in prioritizing
stakeholder engagement and managing expectations efficiently. The stakeholder matrix is a strategic tool
in test management that:

Certified Tester

Advanced Level Test Management

V3.0 Page 22 of 87 2024/03/28

© International Software Testing Qualifications Board

• Utilizes stakeholders' expertise, with end-users and technical teams providing feedback and
insights on performance and security.

• Supports risk management by highlighting stakeholder interests and influence, encouraging
proactive mitigation efforts.

• Values diverse perspectives with valuable feedback.

The stakeholder matrix is composed of four quadrants:

• Promoters (High Influence, High Interest): key collaborators with high influence and interest,
vital for shaping the test strategy and plan.

• Latents (High Influence, Low Interest): While they may not have a strong interest in the day-to-
day tasks, their decisions are critical for resource allocation and high-level project direction.

• Defenders (Low Influence, High Interest): They often provide qualitative feedback and can be
kept engaged through regular updates and involvement in specific discussions.

• Apathetics (Low Influence, Low Interest): Though not closely involved, updating them on
significant milestones and seeking their input on particular issues can yield unique insights.

The test manager's role includes compiling a detailed stakeholder list and understanding each one's
connection to the testing activities, using the stakeholder matrix to enhance the effectiveness of test
management practices.

Figure 1. Different types of stakeholders

1.2.3 Test Management in a Hybrid Software Development Model

Hybrid software development models integrate elements from both traditional sequential approaches and
Agile practices to suit specific project needs or organizational transitions. The following are common
reasons to use a hybrid software development model, although depending on the organization and the
project, there can be other reasons as well:

High Influence,
Low Interest

(Latents)

High Influence,
High Interest

(Promoters)

Low Influence,
Low Interest

(Apathetics)

Low Influence,
High Interest

(Defenders)

Certified Tester

Advanced Level Test Management

V3.0 Page 23 of 87 2024/03/28

© International Software Testing Qualifications Board

• Hybrid as a transition to Agile: Transitioning from traditional to Agile methodologies can be
challenging due to the fundamental changes in workflow, culture, and team dynamics. Hybrid
models provide a balanced approach that eases this transition by combining the structure of
traditional methods with the flexibility of Agile practices.

• Hybrid as fit for purpose: Some organizations or projects may not be able to move to Agile.
Projects that are high-risk may require sequential tasks for some things and Agile practices for
others. They can use a hybrid model as it fits their purpose.

In a hybrid setting, test management activities may include:

• Evaluating team's understanding and capability to seamlessly transition between traditional and
Agile methodologies.

• Identifying strengths and weaknesses in adapting to a hybrid approach

• Ensuring the team is adept at combining structured processes with Agile flexibility

• Enhancing collaboration between the test team and stakeholders to better manage testing within
sprints and traditional test phases

• Participating in coordinated efforts, such as scrum-of-scrums for testers, to maintain focus on
testing while contributing to the overall development objectives.

• Tracking and reviewing test efforts and cases within sprints to ensure they align with Agile
practices.

Further information can be found in (Fowler, 2010).

1.2.4 Test Management Activities for Various Software Development Lifecycle Models

To properly align testing within the SDLC model, a test manager must understand the various SDLC
models used in their organization and utilize that knowledge to properly align testing with the
development activities.

The table below shows a comparison between various test management activities based on different
SDLC models:

Aspect Sequential Development Model
e.g., V-Model

Iterative Development Model
e.g., SCRUM

Estimation Early detailed estimation for each test
level.

Iterative estimation, part of story planning
per iteration.

Testware Includes strategy, plan, cases,
schedule, and reports.

Focuses on acceptance criteria and
definition of done; minimal documentation.

Roles Test manager oversees decisions and
team management.

Roles are integrated; facilitator or coach
replaces traditional test manager.

Tools Predominantly test management tools
suited for phase-based testing.

Tools for CI/CD and automation are
central, supporting continuous testing.

Testing Approach Scheduled in advance, corresponding
to project phases

Embedded within iterations, with a focus
on adaptability and feedback.

Certified Tester

Advanced Level Test Management

V3.0 Page 24 of 87 2024/03/28

© International Software Testing Qualifications Board

Aspect Sequential Development Model
e.g., V-Model

Iterative Development Model
e.g., SCRUM

Test automation Implemented strategically, can occur at
various stages

Built-in from inception, with emphasis on
automated regression in CI/CD

Monitoring and
reporting

Milestone-based reporting, with optional
automated dashboards

Continuous reporting with real-time
dashboards and daily status updates

Metrics Focuses on traditional test metrics and
defect management. (e.g., test
execution, defect rates).

Includes Agile metrics for iteration tracking
in addition to traditional metrics. (e.g., team
velocity, burndown charts)

Table 1: Test Management Activities for Various SDLC Models

1.2.5 Test Management Activities at Various Test Levels

Component testing:

• Define the scope, objectives, and completion criteria for component testing (unit testing).

• Involve testers in activities beyond traditional testing roles such as code reviews, where their
analytical skills add value.

• Coordinate with the development team for issue resolution and unit test contribution.

Component integration testing:

• Determine integration sequences and test combinations in collaboration with the development
team, taking into account the SDLC model, tools, and processes.

• Oversee progress to ensure it aligns with system and acceptance testing strategies.

• Manage this phase cooperatively with developers, considering component (unit) integration
testing as well.

System integration testing:

• Ensure the scope and objectives of system integration testing are clear and attuned to risk
assessment and quality targets.

• Maintain oversight of progress, outcomes, and issue management during system integration
testing.

System testing:

• Tailor planning to the SDLC model, with careful allocation of resources, tool selection, and
scheduling.

o For Agile projects, integrate system testing with iterative story testing, avoiding distinct
test phases and ensure testing is continuous and integrated. While in sequential models,
testing may follow planned stages.

Certified Tester

Advanced Level Test Management

V3.0 Page 25 of 87 2024/03/28

© International Software Testing Qualifications Board

Acceptance testing:

• Collaborate with stakeholders to review and confirm fulfillment of acceptance criteria and plan
testing activities, including managing user testing in UAT.

• Coordinate acceptance testing logistics, facilitating tests at the customer's site, to ensure the
product meets the business needs and quality standards outside of the development
environment.

• Facilitate the resolution of any issues with UAT, and guide stakeholders through the process of
product sign-off upon meeting acceptance criteria.

1.2.6 Test Management Activities for Different Test Types

Effective test management requires an integrated approach that considers the unique demands of
functional, non-functional, black-box, and white-box testing. For managers carrying out functional testing,
the focus is on ensuring that all functionalities are thoroughly tested and meet the defined requirements.
Non-functional testing management revolves around verifying system attributes like performance and
security. Black-box testing management involves ensuring that tests are user-focused and that all
possible external interactions are covered. White-box testing management emphasizes understanding the
code structure and ensuring that tests thoroughly cover the internal logic.

Functional Testing Management:

• Strategic Planning and Progress Tracking: crafting a detailed test strategy that aligns with
functional requirements and project objectives, as well as monitoring progress.

• Resource Coordination: Allocating human and technical resources efficiently to cover all
functional aspects of the system.

Non-Functional Testing Management:

• Performance Benchmarking: Establishing performance benchmarks and managing the testing
activities that assess the system against these criteria.

• Compliance Verification: Overseeing tests that ensure the system meets non-functional standards
such as security, usability, and reliability.

Black-Box Testing Management:

• Test Coverage Analysis: Ensuring that black-box tests cover all user scenarios and business
requirements.

• Feedback Incorporation: Managing the process of gathering feedback from stakeholders to refine
black-box testing approaches and the fixing of defects.

White-Box Testing Management:

• Code Coverage Optimization: Overseeing the use of code coverage tools to identify gaps in
white-box testing and directing resources to address these areas.

• Technical Insight Integration: Managing the incorporation of technical insights into the test
planning process, ensuring that tests are designed with an understanding of the internal workings
of the application.

Certified Tester

Advanced Level Test Management

V3.0 Page 26 of 87 2024/03/28

© International Software Testing Qualifications Board

1.2.7 Test Management Activities to Plan, Monitor, and Control

Effective test management is the cornerstone of any successful testing effort, encompassing a wide
range of activities that necessitate careful planning, vigilant monitoring, and strategic control. Test
managers play a pivotal role in ensuring that the test process is not only effective and efficient but also
tailored to the unique demands of the project at hand.

Test Planning:

• Comprehensive Scope Definition: A test plan must be meticulously crafted, incorporating a
thorough definition of scope. This includes identifying all functional and non-functional
requirements to ensure complete test coverage. It also involves considering the implications of
both black-box and white-box testing methodologies, ensuring that the test cases developed are
capable of validating the system under test from all angles.

• Risk Assessment and Mitigation Plan: Integral to the test plan is a robust risk management
framework. Test managers must undertake a detailed risk analysis, pinpointing potential
vulnerabilities and challenges that could impact both the project workflow and the end product.
The development of mitigation strategies is crucial, involving preemptive planning to circumvent
or minimize these risks effectively.

• Resource Allocation Strategy: Resource planning is another critical element. This extends
beyond mere allocation to defining the structure of the team, delineating roles, and establishing
communication protocols. In environments where teams are distributed, as with onsite/offsite
models, this becomes especially significant to maintain synchrony and to ensure seamless
collaboration.

Test Monitoring:

• Execution Oversight: Monitoring plays a central role in the test management process. It involves
a continual review of test execution against the established plan, tracking the progress of test
cases, and managing any defects that arise. Adjusting test priorities based on risk assessments
and real-time developments ensures that testing remains focused and aligned with the most
critical areas.

• Tool and Environment Optimization: The judicious selection and usage of test tools and
environments are crucial for supporting the testing strategy. Continuous monitoring ensures that
they are effectively integrated within the CI/CD pipeline, facilitating continuous testing and
immediate feedback loops that are vital for the Agile development process.

• Development Collaboration: Maintaining a close working relationship with the development
team is essential for successful test outcomes. This collaboration should support a
comprehensive approach to testing, leveraging insights from both white-box and black-box
perspectives to preemptively address potential issues.

Test Control:

• Adaptive Process Management: Test control is about dynamically adjusting the testing process
in response to new insights, challenges, and evolving project dynamics. It requires a test
manager to be responsive and flexible, capable of implementing changes to the testing approach
that reflect the current state of the project.

Certified Tester

Advanced Level Test Management

V3.0 Page 27 of 87 2024/03/28

© International Software Testing Qualifications Board

• Quality Gate Management: A structured approach to quality gate management is fundamental.
This includes defining what constitutes a quality gate within the testing lifecycle and making
informed decisions about the progression of the testing phase, which is instrumental in
maintaining product integrity.

By focusing on these specific activities within test planning, test monitoring, and test control, test
managers can ensure that the test process is well-defined, adaptable to project changes, and results in a
product that meets both the project requirements and stakeholder expectations.

Certified Tester

Advanced Level Test Management

V3.0 Page 28 of 87 2024/03/28

© International Software Testing Qualifications Board

1.3 Risk-Based Testing

Introduction

Risk-based testing involves the identification, assessment, monitoring and mitigation of risks to drive
testing. These risks are identified by diverse stakeholders and can be used to select and prioritize tests.
The higher the risk level, the earlier the testing should begin, and the more intense and prolonged the test
effort should be.

1.3.1 Testing as a Risk Mitigation Activity

A product risk is a potential situation where quality problems may exist in a product. When tests reveal
defects, testing has helped mitigate product risk by providing the awareness of defects and opportunities
to deal with them before release. When tests do not find defects, testing indicates that the product risk
level is lower than expected.

Among other things, the test manager is responsible for delivering a correct and reliable evaluation of the
product quality. This requires an active involvement in project risk management with a focus on project
risks related to quality assurance (e.g., ambiguous requirements that lead to major issues in late
validation, insufficient test environments obstructing test execution).

Risk-based testing focuses testing on the quality risks. It follows the generic risk management process,
which consists of the following main activities:

• Risk analysis, consisting of risk identification and risk assessment

• Risk control, consisting of risk monitoring and risk mitigation

These main activities are logically organized in sequential order, but they can overlap.

To focus testing on quality risks, the quality risks must be identified and assessed. To be most effective,
risk analysis should include diverse stakeholders. Being a principal stakeholder of the quality risk
analysis, the test manager should understand and monitor these activities and be able to moderate them.

Test monitoring should include risk monitoring. In addition to monitoring the evolution of known quality
risks, it should include analyzing any new quality risks and adjusting the risk register.

The test manager is one of several people who drive the mitigation of quality risks. Risk mitigation is
distributed over several test activities. For example, the results of quality risk analysis are used in test
planning to focus the testing on the correct areas using the correct techniques. In test analysis, risk levels
guide the selection of test conditions to be covered. In test execution, risks-based prioritization governs
the sequence of test execution.

1.3.2 Identification of Quality Risks

The task of the test manager is to gather the risks from the stakeholders. Stakeholders can identify quality
risks through one or more of the following techniques:

• Expert interviews

• Independent assessments

• Retrospectives

Certified Tester

Advanced Level Test Management

V3.0 Page 29 of 87 2024/03/28

© International Software Testing Qualifications Board

• Risk workshops

• Brainstorming

• Checklists

• Referring to past experience

By involving the broadest possible sample of stakeholders, the risk identification process often identifies
most of the significant product risks. Identification of which stakeholders to participate at this stage is very
important. It is essential to ensure that the list of participating stakeholders is comprehensive and agreed
upon with the project manager. Risk identification that misses key stakeholders can be very problematic.
The key is to ensure that all the relevant stakeholders have a chance to participate. If they cannot
participate, they should at least have a chance to delegate the task. When key stakeholders may not be
represented, a kick-off meeting can be used to determine if they are missing.

In risk-based testing, it is important to understand that risk is not uniformly distributed within the test
objects. For example, customer-facing components of a self-service application may have very different
usability risks from the administration components. Identifying the individual risks of the various test items
is an important task in test planning.

Risk identification often produces by-products, (i.e., identification of issues which are not product risks).
Examples include general questions or issues about the product or project, or problems in referenced
documents such as requirements and design specifications. Project risks are also often identified as a by-
product of quality risk identification but are not the focus of risk-based testing. The test manager can often
play a significant role in highlighting these by-products and making it clear that quality is everyone’s
concern. Poor or missing requirements are often an indication of a more fundamental problem in planning
and preparation, as quality assurance is involved throughout the SDLC.

1.3.3 Quality Risk Assessment

Once risks have been identified, they can be assessed. Quality risk assessment includes the
categorization of risks by type (product risk or project risk) and by quality characteristics impacted.

Determining the risk level typically involves assessing, for each risk item, the risk likelihood of occurrence
and the risk impact upon occurrence. Factors influencing risk likelihood for quality risks include:

• Complexity of technology, tools, or system architecture

• Maturity of the organization

• Personnel issues with skills, availability, motivation or autonomous working, including knowledge
of the SDLC in use

• Conflict within the team

• Contractual problems with suppliers

• Geographically distributed teams

• Weak managerial or technical leadership

• Time, resource, budget, and management pressure

• Lack of early quality assurance activities

Certified Tester

Advanced Level Test Management

V3.0 Page 30 of 87 2024/03/28

© International Software Testing Qualifications Board

• High change rates of the test basis, product, or personnel

Factors influencing the risk impact include:

• Frequency of use of the affected feature

• Criticality of the affected feature

• Criticality of the affected business goal

• Damage to reputation

• Loss of business income

• Potential financial, ecological or social losses, or liability

• Civil or criminal legal sanctions

• Interfacing and integration issues

• Lack of reasonable workarounds

• Safety needs

The test manager combines risk likelihood and risk impact to determine the risk level.

If risk analysis is based upon extensive and statistically valid risk data, a quantitative assessment is
appropriate. For example, risk likelihood can be expressed as a percentage and risk impact as an
amount. In such a case, the risk level can be calculated as the product of these two factors. Typically,
though, risk likelihood and impact can only be ascertained qualitatively on ordinal scales, e.g. as very
high, high, medium, low, or very low. Risk likelihood and risk impact values are then combined through a
risk matrix to create an aggregate risk level. This aggregate risk level should be interpreted as a
qualitative, relative rating upon an ordinal scale.

Unless the risk analysis is based upon extensive and statistically valid risk data, the risk analysis will be
qualitative, based on the stakeholders’ subjective perceptions of risk likelihood and risk impact.

1.3.4 Quality Risk Mitigation Through Appropriate Testing

In software development, testing is the most important quality risk mitigation activity, and makes it
possible to reduce the likelihood of failures. Other possible risk mitigation measures include a
contingency plan (e.g., by providing workarounds), risk transfer to a third party (e.g., the vendor of a
component), or risk acceptance.

In test planning, the time and effort associated with developing and executing a test should be
proportional to the risk level: Testing for higher risk levels should start early and use more rigorous test
techniques, while testing for lower risk levels may start later and should use less rigorous test techniques.
To best mitigate the overall risk through testing, the test manager should analyze the following contextual
factors and select an appropriate test approach:

• The test items: Different test items within a test object may have different levels of the same risk
type, so a test object does not need to be tested with uniform rigor

• The quality characteristics: Risks affecting specific quality characteristics should be mitigated
by associated test types which need specific test effort, test environments, and testing skills

Certified Tester

Advanced Level Test Management

V3.0 Page 31 of 87 2024/03/28

© International Software Testing Qualifications Board

• The test levels and test types: Certain risks may only be tested dynamically on particular test
levels; others by static testing, (e.g., static analysis and code reviews for maintainability), or by a
combination of both (e.g., by a review of the architecture, and dynamic testing of the integrated
system for security vulnerabilities). Testing every test item as early as possible mitigates the risk
of finding critical defects late in the lifecycle which would cause higher internal failure costs and
delays.

• The SDLC: Test activities have their own specific entry criteria. Various SDLCs fulfill them at
different times.

• The test team: The most qualified people should test the test items with the highest risk levels.

• The regulatory requirements: Some safety related standards (e.g., IEC 61508 standard),
prescribe the test techniques and the required coverage based on the integrity level. The test
manager has to ensure that these standards are followed.

In addition, the risk level should influence quality control decisions such as the use of reviews of work
products like test cases, the level of independence of testing from development, and the extent of
regression testing performed.

During test monitoring and test control, risk-based testing allows reporting on the test progress in
terms of the residual risk level at any point in time. This supports the development team and stakeholders
in monitoring and controlling software development, including making release decisions, based on the
residual risk level. This requires reporting test results in terms of risks in a way stakeholders can
understand.

During test implementation, test prioritization is based on the risk levels. During test execution, this
ensures early coverage of the most critical areas and mitigation of the highest level risks.

• In some cases, tests are prioritized for execution in strict descending order of the levels of risk
they cover, starting with the highest. This approach is called depth-first and is appropriate when it
is important to mitigate the highest level risks as early as possible.

• Alternatively, at least one test for each risk is assigned highest priority. All other tests are
prioritized based on their levels of risk covered. This approach is called breadth-first and is
appropriate when stakeholders want an overall view of the product quality as early as possible. In
practice, testing often starts with the depth-first approach, but as time becomes more limited, it
switches to the breadth-first approach, testing all remaining risk items at least once.

Whether risk-based testing proceeds depth-first, breadth-first, or combined, the time allocated for testing
may be consumed without all planned tests being run. At this point, risk-based testing facilitates the
provision of a justified recommendation to management whether to extend testing or to accept the
remaining risk.

1.3.5 Techniques for Risk-Based Testing

There are a number of specific techniques with various degrees of formality to implement risk-based
testing. The suitability of a technique depends on project, process, and product considerations. There are
two basic types of techniques: heavyweight or lightweight. In safety-critical systems, heavyweight
techniques are very often used. In non-safety-critical applications, lightweight techniques are usually
employed.

Heavyweight techniques are formal, using defined procedures and detailed documentation. They involve
broad groups of stakeholders. Risk assessment within heavyweight techniques uses detailed factors of

Certified Tester

Advanced Level Test Management

V3.0 Page 32 of 87 2024/03/28

© International Software Testing Qualifications Board

risk likelihood and risk impact, and mathematical formulas to calculate the risk likelihood and risk impact
from those factors. Examples of heavyweight techniques are:

• Hazard analysis: Extends the analytical process upstream by attempting to identify the hazards
that underlie each risk

• Cost of exposure: Determines for each quality risk item the likelihood of a failure, the cost of a
loss associated with a typical failure, and the cost of testing for such failures

• Failure mode and effect analysis (FMEA) and its variants: Identifies quality risks, their
potential causes and their likely effects and then assigns severity, priority, and detection rates

• Fault tree analysis: Relates potential failures to defects that can cause the failure, then with
errors that can cause those defects, continuing on until the various root causes are identified

In contrast, lightweight techniques are less thorough and require less effort from the test team and the
stakeholders. Like heavyweight techniques, they are also based on stakeholder involvement, using the
results of risk analysis as the basis for test planning and the test conditions. However, the group of
stakeholders may not be that broad, and the risk factors are usually reduced to risk impact and risk
likelihood on an ordinal scale. Some of these techniques, like Systematic Software Testing (SST) (Craig &
Jaskiel, 2002), can only be used when requirements specifications are provided. Other techniques,
including Pragmatic Risk Analysis and Management (PRAM) (Black, 2009) and Product Risk
Management (PRISMA) (van Veenendaal, 2012), use the requirements and/or other specifications as an
input to the risk analysis but can function entirely based on stakeholder input.

1.3.6 Success Metrics and Difficulties Associated with Risk-Based Testing

In a retrospective, the test team should measure the extent to which they realized the benefits of risk-
based testing. In many cases, this involves answering some or all of the following questions through the
use of metrics and consultation:

• Were the relevant stakeholders involved or represented in the risk analysis?

• Was the involvement of the stakeholders in risk analysis appropriate?

• If there have been critical incidents in production that indicate critical defects have escaped, have
they been resolved?

• Were most of the high priority defects found early in test execution?

• Was the test team able to explain the test results to stakeholders in terms of risk?

• Did the skipped tests have a lower level of associated risk than those executed?

In most cases, successful risk-based testing results in an affirmative answer for all these questions. In the
long term, process improvement goals for success metrics should be set, along with striving to improve
the efficiency of the quality risk analysis process.

Managing risk often encounters unexpected difficulties due to complexities that are often overlooked.

• Difficulty in assessing the risk level: Estimating the risk impact and risk likelihood can be very
difficult. Solution: use historical data and ask key project stakeholders for their assessment.

• Keen beginnings: Setting up and maintaining a proper risk-based test approach is often
neglected in the face of high short-term pressure to succeed. Solution: regular monitoring and
reporting of risk to the stakeholders.

Certified Tester

Advanced Level Test Management

V3.0 Page 33 of 87 2024/03/28

© International Software Testing Qualifications Board

• Déjà vu: The same set of risks are being raised for each project which leads to complacency
towards risk. Solution: involve the right people in risk identification and mitigate only those risks
that are deemed important.

• Key risks are being missed: The root cause of this issue is usually due to the involvement of
inexperienced or inappropriate people in the process. Solution: involve appropriate people and
train them.

• Stakeholder churn: Stakeholders may change over time and also new risks may pop up, so risk
analysis is an ongoing, iterative activity and should not only be performed once at the beginning.

Certified Tester

Advanced Level Test Management

V3.0 Page 34 of 87 2024/03/28

© International Software Testing Qualifications Board

1.4 The Project Test Strategy

Introduction

Throughout this syllabus, the organizational test strategy is taken as given. The development and
maintenance of an organizational test strategy is considered in the context of ISO/IEC/IEEE 29119-3
(where it is referred to as an “organizational test practice”) and the syllabi for the ISTQB® Expert Level -
Test Management, and the ISTQB® Certified Tester Agile Test Leadership at Scale.

If an organizational test strategy does not exist or does not cover the required aspects, test management
must seek to clarify the missing details with the relevant stakeholders.

In the context of this section the definition of a project test strategy is an example of any type of a detailed
test strategy for a project, a release, a product, or any other type of system development or acquisition
initiative. A project test strategy (referred to as a "test strategy" in the ISO/IEC/IEEE 29119-3) describes
the approach to testing in a specific context so that the organization's objectives can be met, particularly
those relating to product quality and test activities. A test strategy may also exist for a single test level or
a test type.

The project test strategy is the main outcome of the test planning for a project and is typically
documented in a test plan or as part of other documents. Documentation of the test strategy is
recommended, but not necessarily in the form of a formal test plan. The need for documentation depends
on the context of testing (see Section 1.2, The Context of Testing). When a project follows a sequential
development model the project test strategy is usually documented, preferably in the test plan (see
ISO/IEC/IEEE 29119-3). Documentation is also often required by contracts, agreements, regulatory
bodies, or laws.

1.4.1 Choosing a Test Approach

The project test strategy guides all testing activities within a project and details objectives, resources,
schedules, and responsibilities. This strategy must be tailored to the unique requirements of the project.
Key decisions include the selection of test levels, test types, and test techniques for static and dynamic
testing and other test practices (e.g., scripted testing, manual testing, back-to-back testing).

In theory, all test types can be performed at any test level, and any test technique can be applied to any
test type at any test level. In practice, the appropriate selection and combination of these choices have a
significant impact on the effectiveness and efficiency of testing. For example, code maintainability can
often be evaluated more effectively and efficiently using static code analysis or code review. On the other
hand, performance efficiency may be better evaluated through scripted system tests due to the interaction
of internal components, or the usefulness of functionality may be better validated with users through
collaboratively developed manual acceptance tests. Choosing the best approach for a test strategy can
be a complex process that can be influenced by organizational test strategy, project context, and other
aspects.

Selecting and combining test levels, test types and test techniques is therefore critical to an effective
project testing strategy as it significantly influences the efficiency and effectiveness of testing.

1.4.2 Analyzing the Organizational Test Strategy, Project Context and Other Aspects

The organizational test strategy, the project context, and additional factors or constraints related to testing
must be fully understood to enable the development of a project test strategy.

Certified Tester

Advanced Level Test Management

V3.0 Page 35 of 87 2024/03/28

© International Software Testing Qualifications Board

To choose the appropriate test approach, the following factors typically must be analyzed:

• Domain: The domain for which the product will be created or modified. Any domain-specific
regulations, standards and practices may change the rigor of testing, the documentation required,
as well as its level of detail. For example, in pharmaceuticals and medicine, the test approach
often emphasizes intensive user acceptance testing focused on risks to patient health, using test
cases based on functional user requirements, whereas user acceptance testing for web-based
insurance applications might focus on usability and increasing the likelihood of new insurance
contracts through A/B-testing.

• Organizational goals and overarching quality characteristics: Organizational goals can
include the need to demonstrate the value of testing and to increase the degree of test
automation or quality characteristics of the test process such as the maturity level of the testing or
the efficiency of defect detection. These may determine the test levels and test types that need to
be adhered to.

• The project goals and type of project: The project goals (e.g., concerning budget, time, and
quality) and the type of project (i.e., customer specific versus market-oriented product
development) typically contain constraints and risks, as well as opportunities that affect testing.
For example, tight budget and time constraints may require the rigorous use of risk-based testing
to prioritize test cases for test execution, while developing of a product specifically for a customer
may require tests that cover pre-defined contractual acceptance criteria.

• Test resources: Any constraints regarding the availability of test resources including the test
tools, test infrastructure, technology and development environment used in the project as well as
available testing staff and their skills must be considered. (see Section 3.1, The Test Team). For
example, experience-based testing requires testers with a good domain knowledge; mobile
applications typically need to be tested on a typically limited number of different devices; the use
of testing tools may be limited by the number of licenses available.

• The software development lifecycle model used for the project: To determine appropriate
test levels, test effort, appropriate entry criteria and exit criteria, see the ISTQB® Foundation Level
Syllabus V.4, Section 2.2 and 5.1. A software lifecycle with continuous integration requires more
automated testing than one-off development using a waterfall model and therefore, different test
types and test techniques may be used.

• Interfaces with other systems: In a system of systems, aligning the testing with other teams or
projects and selecting appropriate test levels especially for system integration testing is essential.
For example, risk-based testing helps to prioritize and scale system integration testing.

• Availability of test data: Constraints on the availability of test data, such as the need for
anonymized test data from production, or the creation of specific test data that may be difficult to
provide and needs to be validated, such as data for AI testing, must be considered. For example,
model-based testing can support test data creation and management of test data.

The test manager should determine which combination of test techniques, test levels and test types
should be used as the best approach to satisfy organizational test strategy, the project context, and
additional factors or constraints related to testing.

Certified Tester

Advanced Level Test Management

V3.0 Page 36 of 87 2024/03/28

© International Software Testing Qualifications Board

1.4.3 Definition of Test Objectives

A test plan should be defined for each test project and should contain, among other aspects, the test

scope, the test objectives, and the exit criteria. The test plan can be set up at the release level, as a

project test plan (also known as a master test plan) and, if required, as a level test plan for the different

test levels. Additionally, test plans for the different quality characteristics, such as a security test plan or a

performance test plan, can be defined. In Agile software development and hybrid software development

projects, an iteration test plan can be agreed upon. For each release and iteration, the scope of functional

features and their non-functional characteristics to be delivered is defined in the test plan and agreed

upon by the stakeholders.

Associated with the features delivered for testing in a project, the project test objectives and exit criteria
must be defined. This can be done by using the S.M.A.R.T. goal methodology:

• S = specific. A project test objective and exit criterion should be clear and unambiguous.

• M = measurable. It should be quantifiable and have specific criteria for measuring progress to
determine whether it has been reached.

• A = achievable. It should be feasible considering the available resources, timeframe and
capabilities.

• R = relevant. It should be aligned with the overall project objectives.

• T = timely. It should have a specific timeframe and a defined deadline for completion.

The project test objectives should address all targeted aspects of quality and quantity, provided they are
measurable or evaluable. Examples of project test objectives are:

• Reaching the specified exit criteria within the defined timeframe

• Meeting the quality goals of the organization (e.g., measured as a key performance indicator for
the number of claims from customers for a product)

• Complying with rules and regulations of the specific industry

• Ensuring the availability of data to authorized users only (e.g., by access rights)

• Checking the functional completeness, functional correctness, performance, efficiency, portability
and security of data migration

• Enhancing the level of test automation,(e.g. for regression or performance tests by a defined
percentage)

• Refactoring code successfully and showing it has not introduced new defects (e.g., to remove
poorly structured source code or technical debt while maintaining the existing functionality,
proven by a regression test)

• Proving the security of interfaces (e.g., by validating Extensible Markup Language (XML)
messages against their XML Schema Definition to ensure the rejection of malicious data)

• Checking the usability of a user interface and achieving some degree of sub-characteristic (e.g.,
by measuring the time it takes to complete a specific task in an online shop)

Apart from the counting and measuring of the project test objectives, the assessment of the quality level
by domain level experts and stakeholders should be considered.

Certified Tester

Advanced Level Test Management

V3.0 Page 37 of 87 2024/03/28

© International Software Testing Qualifications Board

Depending on the project context and test objectives, sometimes multiple test environments with the
available resources and/or test tools may be required. The test environments may not all be available at
the same time. This needs to be considered when formulating achievable test objectives and exit criteria.

Depending on the project context, additional factors would have to be considered in defining the test
objectives and test scope of the project, as described in Section 1.2 of this syllabus, The Context of
Testing.

Certified Tester

Advanced Level Test Management

V3.0 Page 38 of 87 2024/03/28

© International Software Testing Qualifications Board

1.5 Improving the Test Process

Introduction

Testing is an important part of software development and often accounts for at least 30-40% of the total
project costs. Next to the many (technical) challenges that software projects are facing (e.g., increasing
complexity and size, new technologies, wide variety of devices and operating systems, and security
vulnerabilities), there is a need to optimize the effectiveness and efficiency of testing as well as a need to
improve test processes accordingly. Learning from existing best practices and one's own errors makes it
possible to improve the test process and to make projects more successful.

An improvement process at an organizational level is typically more useful than an improvement process at
a project or team level. However, it is nevertheless also possible and beneficial to apply process
improvement at a project or team level but it should be tailored to the needs of the project or team. A test
improvement can be initiated, for example, by dissatisfaction with the results of current tests, unexpected
defects, changing circumstances, a benchmark result, or lack of communication. Different techniques are
available to improve testing (Bath & van Veenendaal, 2014). Some of these techniques are described
below. The techniques described in this syllabus can be applied to both sequential development models and
Agile software development/incremental development models. The ISTQB® Expert Level Improving the Test
Process Syllabus offers a deeper insight.

1.5.1 The Test Improvement Process (IDEAL)

Once it has been agreed upon that test processes should be improved, the process improvement
implementation activities to be adopted for this activity can be defined as in the IDEAL model, which is
based on similar ideas as the well-known plan-do-check-act (PDCA) cycle. IDEAL is an acronym that
stands for Initiating, Diagnosing, Establishing, Acting and Learning.

Although IDEAL was originally defined to support improvement activities at an organizational level, it can
also be applied at a project or an Agile software development team level. In a project context, the
objectives of the activities (see hereafter) are yet to be achieved. The main difference is probably the
initiating phase, which is much smaller at a project or team level than an organizational level. Diagnosing
through a retrospective and establishing a plan would most likely be much smaller than for an
organizational level. Acting and learning will all also be relevant at a project or team level.

Initiating the Improvement Process

At the start of the improvement process, the objectives and scope of the process improvements are
agreed upon by the stakeholders.

Diagnosing the Current Situation

The current test process is assessed to identify possible improvements. The assessment is typically
made against a standard framework in case of model-based test process improvement (see Section
1.5.2, Model-Based Test Process Improvement) or can be based on an analysis of specific metrics in
case of analytical-based test process improvement (see Section 1.5.3, Analytical-Based Test Process
Improvement Approach).

Establishing a Test Process Improvement Plan

A test process improvement plan can be a formal document that lists all of the detailed actions that must
be performed to achieve improvements. Depending on the context, the plan can be highly informal and

Certified Tester

Advanced Level Test Management

V3.0 Page 39 of 87 2024/03/28

© International Software Testing Qualifications Board

very lightweight. The list of possible process improvements should be prioritized. The prioritization can be
based on return on investment (ROI), risks, alignment with project or team strategies, and/or measurable
quantitative or qualitative benefits that are to be accomplished.

Acting to Implement Test Process Improvement

The test process improvement plan for the delivery of the improvements is implemented. This typically
includes training and piloting of changed processes and their full deployment in the project or team.

Learning from the Improvement Program

Having fully deployed the process improvements, it is essential to verify which benefits, either planned or
unexpected, were received. Having learned what worked and did not work, we must act on this
information and only thereafter the next improvement cycle can start.

1.5.2 Model-Based Test Process Improvement

One premise for both model-based test process improvement and analytical-based improvement is the
assumption that the product quality is highly influenced by the quality of the processes being used and
applied. When applying model-based test process improvement, one uses a test improvement model.
Test improvement models are based on best practices in testing and organize test improvement in a
stepwise manner.

Several recommended process models have emerged that support test process improvement. These
include Test Maturity Model integration (TMMi®) and TPI NEXT®.

Model-based improvement can also be applied on a project level. In such cases the assessment and
improvement process are specifically focused on the test processes or key areas defined in the model
that relate to the activities at the project level (e.g., test planning and test design) and often largely omit
those that are at the organization level (e.g., test policy and test organization). Alternatively, one can also
appropriately tailor the practices that address the organizational level to the project’s context.

For more information on model-based test process improvement see ISTQB® Expert Level Improving the
Test Process Syllabus.

Test Maturity Model integration

The TMMi® (van Veenendaal & Cannegieter, 2011) (van Veenendaal, 2020) is composed of five maturity
levels. Each maturity level, except for TMMi® level 1, contains test process areas and improvement goals.
In addition, to facilitate and support its implementation TMMi® contains practices, sub-practices, and
examples. TMMi® was initially developed to complement the Capability Maturity Model Integration
(CMMI®), but today is widely used independent of CMMI®.

To facilitate and support the update of TMMi® in Agile software development, a specific guideline has been
developed that explains how TMMi® can be used and applied beneficially in Agile software development.

For more information on TMMi® see www.tmmi.org.

TPI NEXT®

The TPI NEXT® model (van Ewijk, 2013) defines 16 key areas, each of which covers a specific aspect of
the test process (e.g., test strategy, test metrics, test tools and test environment). Four maturity levels are
defined in the model for each of the 16 key areas.

http://www.tmmi.org/

Certified Tester

Advanced Level Test Management

V3.0 Page 40 of 87 2024/03/28

© International Software Testing Qualifications Board

Specific checkpoints are defined to assess each key area at each of the maturity levels. Assessment
results are summarized and visualized by means of a maturity matrix which covers all key areas.

For more information on TPI NEXT® see www.tmap.net.

1.5.3 Analytical-Based Test Process Improvement Approach

Using a model-based improvement approach, as described in the previous section, improvements are
introduced by comparing the test approach of a project or team to external best practices. Analytical
approaches identify problems based on data from the project or team itself. Appropriate improvements
can be derived from an analysis of these problems. Analytical approaches can be used together with a
model-based approach to verify results and provide diversity.

Problems can be identified by using quantitative and qualitative data. Section 1.5.3 of this syllabus,
Analytical-Based Test Process Improvement Approach, introduces analytical approaches that mainly use
quantitative data from the test process and data from defects to assess the current approach. Section
1.5.4 of this syllabus, Retrospectives, introduces retrospectives, in which qualitative data regarding what
works well and what does not work well, is collected from development and test team members.

Data analysis is important for objective test process improvement and a valuable support to purely
qualitative assessments, which may otherwise result in imprecise recommendations that are not
supported by data. Applying an analytical approach to improvement most often involves a quantitative
analysis of the test process to identify problem areas and set project-specific goals. The definition and
measurement of key parameters is required to assess the test process and evaluate whether
improvements are successful.

Examples of analytical approaches are:

• Root cause analysis

• Analysis using measures, metrics, and indicators

• The GQM (Goal-Question-Metric) approach

Root cause analysis is the study of problems to identify their root causes. This allows the identification of
solutions that remove the causes of problems rather than merely addressing the immediate obvious
symptoms. A possible analysis procedure would involve selecting an appropriate set of defects,
identifying clusters in this data, and using cause-effect diagrams (also called Ishikawa or fishbone
diagrams) to identify the root causes of important defect clusters. Improvements are then derived to
prevent similar defects from occurring.

Measures, metrics, and indicators are used in a quantitative manner to assess how well the test process
in the project or team is performed. Key attributes of the test process to be considered are effectiveness,
efficiency, and predictability. For each of these attributes, one or several metrics can be selected. By
collecting and analyzing corresponding data, the key areas requiring improvement can be identified.

The GQM approach (Basili, et al., 2014) (van Solingen & Berghout, 1999) provides a framework to define
and analyze metrics that are tailored to the information needs of relevant project stakeholders.
Measurement goals define a quality aspect of an object that needs to be measured for a particular
purpose, perspective, and context. These goals are refined into questions that define the quality aspect
from the stakeholders’ viewpoint. Metrics are then selected that provide the necessary information to
answer the question. Data collected for the metrics answer the questions, to assess the measurement
goal and satisfy stakeholders’ information needs.

http://www.tmap.net/

Certified Tester

Advanced Level Test Management

V3.0 Page 41 of 87 2024/03/28

© International Software Testing Qualifications Board

More information on these analytical-based test process improvement approaches can be found in
ISTQB® Expert Level Improving the Test Process Syllabus.

1.5.4 Retrospectives

Retrospectives are meetings in which a team reviews its methods and collaboration, captures lessons
learned (good and bad), and decides on changes and actions to achieve improvements (both for testing
and non-testing issues). Retrospectives address topics such as the process, people, organization,
collaboration, and tools.

Retrospectives are used in both sequential development models and Agile software development. In
sequential development models they are a part of test completion. In this context, retrospectives aim at
generating lessons learned in order to better manage future projects. In Agile software development
retrospectives are generally held at the end of each iteration to discuss what was successful and what
needs to be improved, and how those improvements can be incorporated in the next iteration.
Retrospectives are performed by the entire team and thus support the whole team approach and foster
continuous improvement. Note that dedicated retrospectives are sometimes required to address testing
issues.

A typical retrospective consists of the following steps:

Introduction: The goal and agenda of the retrospective are reviewed, and an atmosphere of mutual trust
is created so that problems can be discussed without placing blame or judgment.

Collect data: Data is collected regarding what happened during the iteration or project. It is possible to
collect qualitative data, such as a timeline of key events that identifies issues and lists how each team
member feels about those issues. In addition, quantitative data from metrics can be presented, for
example, data for test progress, defect detection, test effectiveness, test efficiency, and predictability can
provide an objective insight into the testing of the project or iteration.

Derive improvements: The collected data is analyzed to understand the current situation and to
generate improvement ideas. For example, root cause analysis can be applied to identify root causes of
identified problems and a brainstorming session can be held in order to generate ideas on how to resolve
the root causes.

Decide on improvement actions: Actions to implement the improvement ideas are derived and
prioritized. An improvement plan and responsibilities are defined. Goals and associated metrics can be
defined to evaluate the impact of the actions on the identified problems. Implementing too many
improvements at once is difficult to manage with verifiable steps.

Close retrospective: In this last step, the retrospective itself is reviewed to identify strengths and
improvements in the retrospective process. A retrospective is performed regularly, especially in Agile
software development. Continuous improvement is also applied to the retrospective itself.

It is important to appropriately document the results of a retrospective. In a sequential development
model, findings, conclusions, and recommendations need to be distributed and communicated in an
understandable way to members of the organization. In Agile software development, problems and
actions should also be documented to allow the review of actions and their potential impact on the
problems in the next iteration.

Testers, being a part of the (project) team, bring in their unique perspective. They can raise testing-
related problems (and others) and stimulate the team to think about possible improvements.

Further information can be found in (Derby & Larsen, 2006).

Certified Tester

Advanced Level Test Management

V3.0 Page 42 of 87 2024/03/28

© International Software Testing Qualifications Board

1.6 Test Tools

Introduction

There are three types of business tools:

• Commercial tools

• Open-source tools

• Custom tools

When selecting a business tool, all organizational and stakeholder requirements and regulations must be
considered.

There also exist technical tools such as test automation tools, test management tools and many more.

Examples for the use of test tools can be found in the ISTQB® Foundation Level Syllabus V.4.

1.6.1 Good Practices for Tool Introduction

This section contains necessary steps for the evaluation and introduction of a test tool.

A test manager may be involved in the introduction of a tool or may foster or facilitate the introduction
process. Test managers are typically responsible for a dedicated test tool, or any tool related to testing
such as a requirements management, defect management, or monitoring tool.

There are generic good practices and considerations when evaluating and selecting a test tool. These
practices and considerations include the following:

• Identify opportunities for process improvement, with the support of appropriate tools

• Understand the technologies used in an organization and select a tool that is compatible with
these technologies

• Understand how a tool is technically and organizationally integrated into the SDLC

• Evaluate the tool against clear requirements and objective criteria

• Evaluate the vendor if you are considering using a commercial tool. Evaluate support for non-
commercial (e.g., open source) tools

• Identify internal requirements for coaching, mentoring, or training in the use of the tool

• Consider pros and cons of various licensing models

• As a final step, perform a proof-of-concept evaluation

Generic good practices in the adoption and roll out of a tool include:

• Run a pilot project to validate the selection criteria and requirements and to evaluate how the tool
fits with existing processes and practices

• Adapt and improve processes to fit with the use of the tool, also adapt the tool to existing
processes, if necessary

• Define guidelines for the use of the tool

Certified Tester

Advanced Level Test Management

V3.0 Page 43 of 87 2024/03/28

© International Software Testing Qualifications Board

• Provide training, coaching, and mentoring for tool users

• Roll out the tool to the organization in increments

• Implement a way to gather information from the actual use of the tool for further improvements

• Define the ownership of the tool

1.6.2 Technical and Business Aspects for Tool Decisions

Multiple factors impact the decision regarding the implementation and usage of a tool. For a test manager
it is important to know and address them.

• Regulations and security: Organizations that develop safety-critical or mission-critical software,
or are subject to regulatory compliance, may prefer commercial tools as they more often meet the
required standards and often possess appropriate certification.

• Financial aspects: Open-source tools usually come at lower initial cost because of community
support and development. Commercial tools may have a one-time purchase price as well as
recurring license costs. The initial cost of a custom tool is difficult to determine because it
depends on the requirements and the stage of development of the tool. Besides the initial costs,
the cost for training and maintenance over the lifetime of a tool must be calculated and
considered. All tools may have high maintenance and support costs.

• Stakeholder requirements: It is important to gather the requirements from all stakeholders to
evaluate and identify the most appropriate tool. Commercial tools and open-source tools do not
necessarily fulfill all requirements in detail. Custom tools can be the best choice to meet all
individual requirements and in instances where no other tool provides the required functionality.

• Existing software landscape and tool strategy: The existing composition of tools (software
landscape) and the associated tool strategy must be evaluated as there may be preferred or
locked vendors, integrated systems that have dependencies with other products, or a special full-
service support model for the entire software landscape with specific regulations.

1.6.3 Selection Process Considerations and Return on Investment Evaluation

Test tools can be a long-term investment, perhaps extending over many iterations of a single project,
and/or applicable to many projects. A prospective tool must therefore be considered from different
viewpoints.

• For the senior management, a positive ROI is required.

• For the support and operations team, a limited, but necessary number of tools used across the
organization is preferred. Maintaining a larger number of tools, keeping track of their licenses,
and managing the tool stack should not be cost or time-consuming.

• For the project leads, the tool must add measurable value to the project or organization.

• For the people who use the tool, usability is very important. Usability includes, for example,
support for given tasks, learnability, and operability.

• For the operational staff members, maintainability is important.

Features must be analyzed for each business and technical type of tool. Different perspectives and
interests have an influence on that analysis: test management, (technical) test analysis, test automation

Certified Tester

Advanced Level Test Management

V3.0 Page 44 of 87 2024/03/28

© International Software Testing Qualifications Board

or development. The person in the organization that is responsible for the tool (the tool owner) must make
sure the analysis is accomplished, and the above-mentioned bullet points are considered.

All tools introduced into the test process should also ensure a positive ROI to the organization. It is the
responsibility of the test manager to take care of the calculation and further evaluation of the ROI. In Agile
software development it may be the responsibility of the entire development team.

A cost-benefit analysis should be performed before acquiring or building a tool to ensure it benefits the
organization. This analysis should take both recurring and non-recurring costs into account.

Non-recurring activities and costs include the following:

• Defining and determining tool requirements to meet objectives

• Evaluating and selecting the correct tool and vendor, proof of concept

• Purchasing, adapting or developing the tool for initial usage

• Defining guidelines for the usage of the tool

• Initial training for the tool

• Integrating the tool into the existing tool landscape

• Procuring hardware/software needed to support the tool

Recurring activities and costs include the following:

• Recurring licensing and support fees

• Maintenance costs

• Ongoing training costs

• Porting the tool to different environments

Opportunity costs must also be considered. This means that the time spent on evaluating, administering,
training, and using the tool could have instead been spent on actual test tasks. Therefore, more test
resources may be needed before the tool can be used for intended activities.

The following risks regarding ROI should be considered when selecting tools:

• Immaturity of the organization can lead to inefficient use of the tool

• Changes in the maintenance policy of the vendor can increase workload

• Higher costs than expected

• Lower benefit than expected

The following benefits may apply to test tools:

• Reduction of manual repetitive work (e.g., regression testing)

• Speed-up of test cycle-time through automation

• Saving test execution costs by a decrease in manual activities

• Increased coverage for certain test types supported by the tool

• Reduction in human error due to fewer manual activities

Certified Tester

Advanced Level Test Management

V3.0 Page 45 of 87 2024/03/28

© International Software Testing Qualifications Board

• Quicker access to information about tests

Additional benefits and risks, especially for test automation tools, can be found in the ISTQB® Foundation
Level Syllabus version 4 and ISTQB® Test Automation Engineer Syllabus.

In general, a test organization rarely uses a single tool. The total ROI for an organization is usually a mix
of the ROI of all tools that are used for testing. Tools need to share information and work cooperatively. A
long-term, comprehensive strategy for test tools that includes risks, costs, and benefits is advisable.

1.6.4 Tool Lifecycle

There are four different stages in the lifecycle of a tool. A tool administrator must be appointed to ensure
that the activities of these stages are defined, carried out and managed.

• Acquisition: First of all, a decision has been made to select a tool. In the second step, a tool
owner needs to be assigned. This person makes decisions on the use of the tool (e.g., naming
conventions of work products and where these work products will be stored). Making these
decisions up front can make a significant difference in the eventual ROI of the tool.

• Support and maintenance: The tool owner is accountable for maintaining the tool.
Responsibility for maintenance activities should be on the administrator of the tool or a dedicated
tools group. In the case of interoperability, data interchange and processes for cooperation and
communication must be considered. Also, decisions on backup and restoration of artefacts
related to the tool are required.

• Evolution: As time goes on, the environment, business needs, or vendor decisions can require
changes to the tool. The more complex an operating environment becomes for a tool, the easier a
change can disrupt its use.

• Retirement: At the end of its lifetime, the tool should be retired. In most cases the functionality
supplied by the tool will be replaced and data must be preserved and/or archived. This may be
based on a vendor decision or because it has reached a point where the benefits and
opportunities of moving to a new tool exceed its costs and risks.

1.6.5 Tool Metrics

Objective metrics from tools are designed and collected based on the needs of the test team and other
stakeholders. Test tools mostly capture valuable real-time data and reduce data collection efforts. This
data is used to manage the overall test effort and identify areas for optimization.

Different tools are focused on collecting different types of data. Examples of these include:

• Test management tools can supply a variety of different metrics related to available test items,
tests, planned tests as well as current and passed test execution status (e.g., passed, failed,
skipped, blocked or planned)

• Requirements management tools deliver traceability regarding requirements coverage by passed
and failed test cases

• Defect management tools can provide defect information such as status, severity, priority and
defect density of test items. Other valuable data, such as the defect detection percentage, the
test levels at which defects are introduced and detected defect lead time help to drive process
improvement, but may not all be provided solely by the defect management tool.

Certified Tester

Advanced Level Test Management

V3.0 Page 46 of 87 2024/03/28

© International Software Testing Qualifications Board

• Static analysis tools, among others, supply metrics related to code complexity

• Performance testing tools can supply valuable information such as response times and failure
rates under peak loads

• Code coverage tools help to understand which parts of the test object have been exercised by
testing

• Although test tools can be used to collect metrics, they should also monitor themselves. In this

context the quality of the test process can be measured (e.g., the number of defects found with

and without tools and requirements coverage)

• Test efficiency (e.g., duration of test execution and number of executed tests)

More details on the collection and usage of metrics can be found in Section 2.1 of this syllabus, Test
Metrics.

Certified Tester

Advanced Level Test Management

V3.0 Page 47 of 87 2024/03/28

© International Software Testing Qualifications Board

2 Managing the Product – 390 minutes

Keywords

anomaly, defect, defect report, defect workflow, failure, metric, test estimation, test objective, test
progress

Domain Specific Keywords

planning poker, three-point estimation, Wideband Delphi

Learning Objectives for Chapter 2:

2.1 Test Metrics

TM-2.1.1 (K2) Give examples of metrics to achieve the test objectives

TM-2.1.2 (K2) Explain how to control test progress using test metrics

TM-2.1.3 (K4) Analyze test results to create test reports that empower stakeholders to make decisions

2.2 Test Estimation

TM-2.2.1 (K2) Explain the factors that need to be considered in test estimation

TM-2.2.2 (K2) Give examples of factors which may influence test estimates

TM-2.2.3 (K4) Select an appropriate technique or approach for test estimation for a given context

2.3 Defect Management

TM-2.3.1 (K3) Implement a defect management process, including the defect workflow, that can be
used to monitor and control defects

TM-2.3.2 (K2) Explain the process and participants required for effective defect management

TM-2.3.3 (K2) Explain the specifics of defect management in Agile software development

TM-2.3.4 (K2) Explain the challenges of defect management in hybrid software development

TM-2.3.5 (K3) Use the data and classification information that should be gathered during defect
management

TM-2.3.6 (K2) Explain how defect report statistics can be used to devise process improvement

Certified Tester

Advanced Level Test Management

V3.0 Page 48 of 87 2024/03/28

© International Software Testing Qualifications Board

2.1 Test Metrics

Introduction – Why Have Test Metrics?

There´s a saying in management “What gets measured, gets done.” Likewise, what is not measured is
not likely to be done because it is easy to ignore. Therefore, it is important to establish a proper set of
metrics for any endeavor, including testing.

Test objectives are the answer to why we test (see Section 1.4, The Project Test Strategy). To determine
whether the test objectives have been met, one must define a way to measure them. Test metrics are the
indicators that help us answer this question.

Test metrics can be categorized as follows:

• Project metrics measure progress against existing project exit criteria, such as the percentage of
tests executed, passed, and failed

• Product metrics measure product attributes such as the degree to which the product meets the
quality expectations of the intended users

• Process metrics measure the capability of the testing process and the effectiveness of testing.
Process metrics are therefore used to report process-related effectiveness and efficiency.

More information on product and process metrics management is found in the ISTQB® Expert Test
Management Syllabus.

More information on the use of process metrics can be found in the ISTQB® Expert Improving the Test
Process Syllabus.

The following sections will discuss the metrics for test planning, test monitoring, test control, and test
completion. These are the four main management activities related to metrics.

2.1.1 Metrics for Test Management Activities

The Advanced Level Test Management Syllabus focuses on the following generic test management
activities:

• Test planning

• Test monitoring and test control

• Test completion (see Section 1.1, The Test Process).

Test management must be able to define a set of test metrics for test monitoring, test control and test
completion as part of the test planning activities. Each metric needs to be defined, measured, monitored
and reported.

During test planning, appropriate test metrics are defined that match the test objectives from the project
test strategy.

The metrics used during test monitoring and test control may be different from those used at test
completion. During test monitoring and test control, the metrics are about the progress of the test
activities. In test completion, the test objectives should be achieved. One or more metrics could be
combined to measure test exit criteria assigned to given test objectives.

Certified Tester

Advanced Level Test Management

V3.0 Page 49 of 87 2024/03/28

© International Software Testing Qualifications Board

The following table provides examples of metrics (there are many more) used in test management
activities:

Metric (planned/monitored for defined milestones) Test Monitoring
and test control

Test Completion

Requirements coverage X X

Product risk coverage X X

Code coverage X

Actual vs. planned estimation (in hours) for testing activities X

Percentage of executed test cases per status (e.g. failed,
blocked) vs. planned test cases

X X

Accumulated number of resolved defects vs. the
accumulated number of defects

X

Actual automated test cases vs. planned automated test
cases

 X

Actual vs. planned cost of testing X

Table 2: Examples of Metrics Used in Test Management Activities

The metric used in a specific test activity is shown in the table. Metrics with an X in test monitoring and
test control are primarily used to measure progress and are reported in test progress reports (CTFL).
Metrics with an X in test completion are primarily used to measure the achievement of test objectives and
are reported in the test completion report (CTFL). Metrics with an X in both columns can be used for
either.

There are also metrics for monitoring test effectiveness (e.g., defect detection percentage (DDP)).

DDP is covered in the ISTQB® Expert Level syllabus, Improving the Test Process module, specifically in
the Implementing Test Process Improvement section.

2.1.2 Monitoring, Control and Completion

Test metrics are indicators that show how far the test has progressed and whether the exit criteria or the
related test tasks have been achieved.

Test monitoring is the activity of collecting data regarding the test and the associated evaluation and
assessment. It is used to evaluate the testing progress and to check the fulfillment of the exit criteria or
the associated test activities (see Section 1.1.2, Test Monitoring and Control). Exit criteria are derived
from the test objectives.

Test control uses the information from test monitoring to provide guidance and corrective actions to
achieve effective and efficient testing. Examples of test control directives include re-prioritizing tests when
an identified risk becomes an issue, re-evaluating whether a test item meets the entry criteria or exit
criteria due to rework, adjusting the test schedule to account for a delay in the delivery of the test
environment, and adding new resources when and where needed.

Test completion collects data from completed test activities to consolidate lessons learned, testware, and
other relevant information. Test completion occurs at project milestones such as the completion of a test

Certified Tester

Advanced Level Test Management

V3.0 Page 50 of 87 2024/03/28

© International Software Testing Qualifications Board

level, the completion of an iteration, the completion (or cancellation) of a test project, the release of a
product, or the completion of a maintenance release.

Common test metrics used in test management activities include project progress metrics and metrics

that show progress against the planned schedule and budget, the current test item quality, and the

effectiveness of testing against the test objectives or iteration objectives.

2.1.3 Test Reporting

Test management should understand how to interpret and use metrics to understand and report test
status. For higher levels of testing such as system testing, system integration testing, acceptance testing,
and security testing, the primary test basis is typically work products such as requirement specifications,
use cases, user stories and product risks. Metrics of structural coverage are more applicable to lower
levels of testing such as component testing (e.g. statement coverage) and component integration testing
(e.g., interface coverage). While test management may use metrics of code coverage to measure the
extent to which their tests exercise the structure of the system under test, reporting of higher-level test
results should be tailored to the specific context and needs of the project. For example, in frequently
changing environments, code coverage metrics may be useful to monitor the impact of code changes on
the test suite and identify potential gaps or risks. In addition, test management should understand that
even if component tests and component integration tests achieve 100% of their structural coverage,
defects and quality risks remain to be addressed at higher test levels.

The objective of reporting metrics is to provide an immediate understanding of the information for
management purposes. Metrics can be reported as a snapshot of a metric at a point in time or as the
evolution of a metric over time to evaluate trends.

Product risks, defects, test progress, coverage and related cost and test effort are measured and reported
in specific ways at the end of the project.

The following are examples of metrics that can be used for different purposes:

Metrics related to product risks include:

• Percentage of risks of which all tests passed

• Percentage of risks of which some or all tests failed

• Percentage of risks not yet completely tested

These metrics can be used to assess the quality of the test basis and the effectiveness of the test cases
in covering the product risks.

Metrics related to defects include:

• Accumulated number of resolved defects versus the accumulated number of defects

• Breakdown of the number or percentage of defects categorized by:

o Test items or components

o Source of the defect (e.g., requirement specification, new feature, or regression)

o Test releases

o Test level or iteration introduced, detected, and removed

o Priority/severity

Certified Tester

Advanced Level Test Management

V3.0 Page 51 of 87 2024/03/28

© International Software Testing Qualifications Board

o Root cause

o Status (e.g., rejected, duplicated, open, closed)

These metrics can be used to monitor the defect detection and resolution process, identify the areas of
high defect density or defect severity, and evaluate the test efficiency and effectiveness.

Metrics related to test progress include:

• Test execution status: Total number of tests planned, implemented, executed, passed, failed,
blocked, and skipped

• Test effort: Number of actual versus planned resource hours devoted to testing

Metrics related to coverage include:

• Requirements coverage: The percentage of requirements that are covered by test cases

• Product risk coverage: The percentage of identified product risks that are mitigated by test cases

• Code coverage: The percentage of code statements, branches, paths, or conditions that are
executed by test cases

Metrics related to costs and test effort include:

• Residual risks for untested components: The potential impact and likelihood of defects in the
components that are not tested

• Test cost: The actual versus planned cost of testing

Additionally, it is useful to combine metrics from different categories (e.g., a metric that shows the
correlation between the trends of open defects versus the trends of executed tests, or a metric that shows
the quality of the test basis based on the number of defects found in the requirements). When test
execution continues and fewer and fewer defects are identified, a decision can be made to terminate the
tests. This decision should be based on the reporting of the metrics and the agreed exit criteria.

Certified Tester

Advanced Level Test Management

V3.0 Page 52 of 87 2024/03/28

© International Software Testing Qualifications Board

2.2 Test Estimation

Introduction

Project management best practices for estimation of system and software engineering exist, regarding all
types of resources (e.g., the cost, people, or time). Test estimation is the application of these best
practices to testing associated with a project or operation.

2.2.1 Estimating What Activities Testing Will Involve

Test estimation is a test management activity that estimates how much time, effort, and cost a task will

take to complete. Test estimation is one of the major and important tasks in test management.

The main characteristics of estimation in test management are:

• Effort is usually calculated in person hours or story points required to finish project test tasks.

Often, test effort and test duration (elapsed time) can be different, and the test management may

need to estimate the total duration of the activity. How many person hours will it take?

• Time required to finish the project. Time is a critical resource in a project. Test planning needs to

estimate test effort in calendar days and in working days. Every project has milestones and a

deadline for delivery. How long will it take to finish the test project?

• Cost is the budget of the project. It includes the expenses for the test resources, tools, and

infrastructure. What will the test project cost?

Testing is often a subproject within a (large) project, sometimes distributed over several test locations

(e.g., test centers). To perform test estimation, the first step is to identify the test levels, test activities and

test tasks. Next, divide the testing project into its main test activities (e.g., test planning and test

execution) within the test process (see the ISTQB® Foundation Level Syllabus V.4). In Agile projects

testing activities are estimated often within the development work, and not as separate values. The next

step is to estimate the test effort required to finish the tasks or the work products and what the expected

costs are from this.

Because testing is a sub-activity of a project, there are always some natural project constraints that

influence it and require compromise, and we cannot manipulate these values arbitrarily. That can be

found in the quality management as the time-cost-quality triangle. In project management, the time-cost-

quality triangle comprises three values that are interdependent, meaning they are closely connected and

influence each other. This relationship is commonly observed in project scenarios.

2.2.2 Factors Which May Influence Test Effort

Test effort estimation involves predicting the amount of test activities-related work that will be needed to
meet the test objectives for a particular project, release, or iteration. Factors influencing the test effort may
include characteristics of the:

Product:

• The quality of the test basis

• The size of the product to be tested (i.e., the test object)

Certified Tester

Advanced Level Test Management

V3.0 Page 53 of 87 2024/03/28

© International Software Testing Qualifications Board

• The complexity of the product domain (e.g., environment, infrastructure, and history)

• The requirements for testing quality characteristics (e.g., security and reliability)

These product-related factors can influence test estimates because they create a context specific for the
system under test.

Development process:

• The stability and maturity of the organization’s development processes

• The development model (e.g., Agile software development/iterative, or hybrid software
development models) in use

• The material factors (e.g., availability of test automation, tools and test environments)

These development process-related factors can influence test estimates because testing is directly
related to development.

People:

• People satisfaction (e.g., provided by public holidays, vacation times, other expected benefits)

• The skills and experience of the people involved, especially regarding similar projects and
products (e.g., domain knowledge)

People are the most necessary resources, thus any instability should be taken into account. Therefore,
people are an important factor in test effort estimation. See also Section 3.1 of this syllabus, The Test
Team.

Test results:

• The number and severity of defects found during test execution

• The amount of rework required

Historical statistics support test estimation. Thus, knowing these factors will support an estimation with
more accurate values.

Test context:

• The distribution of testing across several subsidiaries, the composition and location of the teams,
complexity of the project (e.g., multiple sub-systems)

• The type of work (e.g., virtual or on-site)

Context-related factors are the ones that affect the entire test estimation. See also Section 1.2. of this
syllabus, The Context of Testing.

2.2.3 Selection of Test Estimation Techniques

Test estimation should cover all activities involved in the test process. The estimated cost, effort, and,
especially, duration of test execution is often most important to test management because these values
will impact the project. However, test execution estimates tend to be difficult to generate when the overall
software quality is low or unknown. In addition, familiarity and experience with the product will likely affect
the quality of the estimates. A common practice is to estimate the number of test cases derived from the
test basis (e.g., requirements or user stories). Assumptions made during test estimation should always be
documented as part of the estimate.

Certified Tester

Advanced Level Test Management

V3.0 Page 54 of 87 2024/03/28

© International Software Testing Qualifications Board

Test estimation techniques or approaches can be categorized as either metric-based or expert-based.

Further details about test estimation techniques are explained in the ISTQB® Foundation Level Syllabus
V.4.

In most cases, the estimate, once prepared, must be delivered to project management, along with a
justification. Frequently, some input parameters are changed (e.g., test scope) often resulting in adjusting
the estimate. Ideally, the final test estimate represents the best possible balance of organizational and
project goals in the areas of quality, schedule, budget, and features.

It is important to keep in mind that any estimate is based on the information available at the time it is
prepared. Early in a project, the information may be quite limited. In addition, this information may change
over time. To remain accurate, estimates should be updated to reflect new and changing information.

The selection of the estimation technique depends on various factors, such as:

• Estimation error: Some techniques provide a way to calculate the standard deviation, which is a
measure of the uncertainty or variability of the estimate. For example, the three-point estimation
technique uses the optimistic, pessimistic, and most likely estimates to calculate the expected
value and the standard deviation of the estimate (see ISTQB® Foundation Level Syllabus V.4,
Section 5.1.4 for more details).

• Data availability: Some techniques require historical data from previous or similar projects which
may not be available or reliable. For example, estimation based on ratios and extrapolation rely
on historical data to derive the ratios or the trends for the current project.

• Expert availability: Some techniques require the involvement of experts who have the
knowledge and experience to provide accurate and realistic estimates. For example, the Delphi
method and planning poker rely on the opinions and judgments of experts or team members.

• Knowledge in modeling: Some techniques require the use of mathematical models or formulas
to calculate the estimates, which may require some skills and knowledge in modeling. For
example, extrapolation and three-point estimation use formulas to derive the expected value and
the standard deviation of the estimate.

• Time constraints: Some techniques require more time and effort to perform than others, which
may affect the feasibility and suitability of the technique. For example, planning poker is easy to
be done, while extrapolation may be more difficult.

This shows that the selection criteria of the proper test estimation techniques are highly dependent on the
context of testing (e.g., SDLC, stakeholders, test levels and test types used in the project) (see Section
1.2 of this syllabus, The Context of Testing). The test manager must be able to coordinate and to apply
the test estimation techniques, (e.g. with different SDLC models in one project over different subsidiaries).

For example, to select the proper estimation technique, first determine the complexity of the topic. If the
complexity is low, then metric-based techniques could be used. If the complexity is high, then expert-
based techniques could be used. If a sequential development model is used, then the Wideband Delphi
estimation technique could be used. If an Agile software development model is used, then planning poker
could be used.

Certified Tester

Advanced Level Test Management

V3.0 Page 55 of 87 2024/03/28

© International Software Testing Qualifications Board

2.3 Defect Management

Introduction

The ISTQB® Foundation Level Syllabus V.4 describes the activities which begin after observing actual
results that differ from expected results. The syllabus refers to these activities as defect management.
Other standards use the term “incident management” ISO/IEC/IEEE 29119-3 Standard or “anomaly
management” (TMAP) to emphasize the fact that at the beginning of the process we may not know if the
discrepancy is caused by a defect in a work product, or due to something else (e.g., test automation
failure or a misunderstanding of the requirements by the tester). Defect management and the tool used to
manage defects are of critical importance to the testers and to other team members involved in software
development. Information from an effective defect management process allows the test team and other
project stakeholders to gain insight into the state of a project throughout its SDLC. Defect management is
also crucial for deciding which defects will be fixed. This ensures that effort is spent on working with the
correct defects. Collecting and analyzing defect-related data over time can help to locate areas of
potential improvement both for testing and for other processes within the SDLC (e.g., better defect
prevention by improved architecture and technical design).

In addition to understanding the overall defect lifecycle and how it is used to monitor and control both the
software development and testing processes, the test manager, and the testers (or whole Agile team in
Agile software development) must also be familiar with which data is critical to capture. The test manager
must be an advocate of the proper use of both defect management process and the selected defect
management tool.

2.3.1 Defect Lifecycle

Each phase of the SDLC should include activities to detect and remove potential defects. For example,
static testing techniques (i.e. reviews and static analysis) can be used on design specifications,
requirements specifications and code prior to delivering those work products into subsequent activities.
The earlier each defect is detected and removed, the lower the overall cost of quality for the product. Cost
of quality is minimized when each defect is removed within the same phase in which it was introduced
(i.e., when the software process achieves perfect phase containment).

During static testing we search for defects. During dynamic testing the presence of a defect is revealed
when it causes a failure, which results in a discrepancy between the actual results and the expected
results of a test (i.e., an anomaly). In some cases, a false-negative result occurs when the tester does not
observe the anomaly. When an anomaly is observed, further investigation should be performed. This
investigation usually starts with completing a defect report in accordance with the defined test and defect
management process. A failed test does not always result in the creation of a defect report. (For example,
in test-driven development, where component tests, usually automated, are used as a form of executable
design specification). Until the development of the component is complete, some or all of the tests must
initially fail. Until the development of the component is complete, some or all of the tests must initially fail.
Therefore, the result of such a test is not necessarily caused by a defect and is typically not tracked via a
defect report.

A defect report progresses along a workflow (for simplicity and consistency with most defect management
tools we will further use the term “defect workflow”) and moves through a sequence of defect states. In
most of these states, one person owns the defect report and is responsible for carrying out a task (e.g.,
analysis, defect removal, or confirmation test). The following diagram represents a simple defect
workflow:

Certified Tester

Advanced Level Test Management

V3.0 Page 56 of 87 2024/03/28

© International Software Testing Qualifications Board

Figure 2: A Simple Defect Workflow

A simple defect workflow may cover the following defect states:

• OPEN (may be called NEW): The initial state when the defect report is created.

• IN PROGRESS: The team is working on the defect report analysis and/or fix.

• REJECTED: A defect report is rejected by the person who processed it (usually a developer or an
analyst). There may be many reasons for rejection (e.g., invalid information, incorrect test,
duplicate defect report) and this information is added to the defect report.

• RESOLVED (may be called FIXED, READY FOR RETEST): A tester runs a confirmation test
often following the steps to reproduce the failure from the defect report itself to determine whether
the fix has indeed resolved the defect.

• CLOSED: The defect report has reached its terminal state, and no further work is intended to be
done. The tester transitions the defect report to this state either after a successful confirmation
test or to acknowledge rejection of the defect report.

A simple defect workflow is used in many organizations and is extended by the use of other defect states
relevant for a given context (e.g., RE-OPENED, ACCEPTED, CLARIFICATION, or DEFERRED).

The defect workflow may vary in different organizations in terms of different names of the defect states,
rules for transitions among defect states and roles responsible for tasks in given defect states. Often the
defect workflow is more simple in Agile software development than in sequential development models.
The defect workflow should be adapted to a given context. When designing the defect workflow, it is
advisable to respect several good practices:

• If possible, the defect workflow should be defined organization-wide to provide unified defect
management across all projects

• Duplicate and false-positive defects should be represented by a separate state or a combination
of the REJECTED status with choosing the reason for rejection. They may be helpful in further
defect analyses with the aim of improving the test process.

REJECTED IN PROGRESS

RESOLVED

CLOSED

OPEN

Certified Tester

Advanced Level Test Management

V3.0 Page 57 of 87 2024/03/28

© International Software Testing Qualifications Board

• It is recommended to use only one terminal state (e.g., CLOSED). The transition to this state
often requires choosing a reason for closure, useful for process assessment and process
improvement activities.

• The names of states in the defect workflow should be the same as for analogous states used for
other entities (e.g., user stories and test tasks) to simplify working with them.

• Consecutive defect states should belong to different responsible roles. If two or more consecutive
states belong to the same responsible role, there should be a good reason (e.g., to measure the
time spent in a defect state).

• Each defect state, except for the terminal state, should have more than one outgoing transition to
allow the responsible role a decision regarding the next step. Exceptions of this rule should be
justified (e.g., to monitor time spent on a given activity).

• The set of attributes required to be entered when performing a state transition should be limited to
those which give substantial value to defect management.

2.3.2 Cross-functional Defect Management

Although the test organization and the test manager often own the overall defect management process
and the defect management tool, a cross-functional team is generally responsible for managing the
defects for a given project. This team, sometimes called the defect management committee, may include
the test manager, representatives of development, suppliers, project management, product management
or product owner and other stakeholders who have an interest in the software under test.

As anomalies are discovered and entered into the defect management tool, the defect management
committee should determine whether each defect report represents a valid defect and whether it should
be fixed (and by which party in case several development teams are participating in delivery), rejected, or
deferred. This decision requires the defect management committee to consider the benefits, risks and
costs associated with fixing the defect. It is beneficial to discuss the consideration in a meeting (often
called the triage meeting). If the defect is to be fixed, the team should establish the priority of fixing the
defect relative to other tasks. The test manager and test team may be consulted regarding the relative
importance of a defect and should provide the available objective information.

On very large projects the appointment of a full-time defect manager may be justified by the effort needed
to prepare for and to follow-up on the decisions made by defect management committee meetings, at
least during those SDLC phases when testing is at its most intensive. In other situations, several large
projects may share a defect manager.

A defect management tool should not be used as a substitute for good communication, nor should a
defect management committee be used as a substitute for effective use of a good defect management
tool. Communication, adequate tool support, a well-defined defect workflow (incl. defect report properties)
and an engaged defect management team are all necessary for effective and efficient defect
management.

2.3.3 Specifics of Defect Management in Agile Teams

Defect management in organizations using Agile software development is often lightweight and/or less
formal than in sequential development models. If Agile teams are co-located or have well established
communication means available, information about a defect or failure is often exchanged among testers,

Certified Tester

Advanced Level Test Management

V3.0 Page 58 of 87 2024/03/28

© International Software Testing Qualifications Board

customer representatives and developers without a formal defect report. Defect reports should, however,
be created for:

• Defects that block other current sprint activities (i.e., development, testing, or other) and could not
be fixed immediately within the Agile team

• Defects that cannot be resolved within the same iteration. Some Agile teams have a rule of
creating a defect report if the defect cannot be resolved during the day the failure is found.

• Defects which must be resolved by or in cooperation with other teams in multi-team organizations

• Defects that must be solved by a supplier

• Defects where a defect report is explicitly requested (e.g., when a developer cannot immediately
work on a fix)

Common practice is to add defects that cannot be resolved within the same iteration to the product
backlog so that they can be prioritized among other defects and user stories for a later iteration.

Although the foundations of defect management should be set in an organization's test strategy, many
aspects including the level of formality, triggers for creation of a defect report, and defect attributes to be
captured may be left to agreement among Agile team members. In general, the level of formality of defect
management and the approach to creating defect reports should reflect the following:

• Co-location of team members

• Distribution of team members across time zones

• The number of teams that cooperate on product development

• Maturity of the team(s)

• Size of the team(s)

• Risks associated with the product

• Regulatory, contractual, or other requirements (if and where applicable)

The final decision of the Agile team regarding the details of defect management should always be
documented (e.g., with guidelines in a knowledge management tool).

2.3.4 Defect Management Challenges in Hybrid Software Development

In practice, multiple teams often collaborate on the delivery of the system or system of systems.
Examples include hybrid software development when a customer uses Agile software development and
one of their suppliers uses a sequential development model, or when an organization using a sequential
development model requires delivery of a subsystem from a team using Agile software development.
Such a multi-team environment poses various challenges:

• Alignment on defect attributes and tools to be used for defect management: In an ideal
scenario all teams use one defect management tool. In practice it is common for each team to
use a different defect management tool, especially when several supplier teams contribute to
project delivery. In such cases it is good to establish synchronization between the defect
management tools (preferably automatically).

Certified Tester

Advanced Level Test Management

V3.0 Page 59 of 87 2024/03/28

© International Software Testing Qualifications Board

• Prioritization of defects: The product owner(s) should be included in defect management
meetings and actively seek information about consequences and risks associated with defects.
Defect management meetings should be held more often with Agile software development than in
sequential development models to keep pace with the Agile team’s faster rate of product
increment delivery. These meetings may, however, be shorter with Agile teams. Sometimes it is
beneficial for a smaller group of defect management stakeholders to have the final word about
prioritization of defects.

• Alignment and transparency of the test plan for new development and defect fixes: All
teams’ work should align to the same project plan irrespective of whether they are using Agile
software development or sequential development models. All deliverables, including defect fixes,
should be aligned with this project plan. Better alignment can be achieved by active participation
of the members of all teams in the planning process (e.g., participation of sequential development
model teams in Agile software development meetings where defects are discussed and
prioritized). Transparency of development plans can be improved by sharing them between
teams (e.g., via dashboards, or via the Product Backlog).

2.3.5 Defect Report Information

The information on a defect report should suffice for the following purposes:

• Management of the defect report through the defect lifecycle

• Assessment of overall project status, especially in terms of product quality, and test progress

• Assessment of the status of a product increment in terms of product quality

• Assessment of process capability

The information needed for defect management and project status can vary depending on when the
defect is detected in the SDLC. In addition, defect reports related to non-functional quality characteristics
may need more information (e.g., load conditions for performance issues). However, the core information
gathered should be consistent across the SDLC and ideally across all projects in an organization to allow
for meaningful comparison of defect data throughout the project and across all projects.

Many data items can be collected in a defect report. The test manager should decide which information is
appropriate for effective defect management for a given project context. Due to the fact that each
additional attribute increases the time spent on defect reporting and may increase confusion by the
person who is entering the defect report, it is advisable to only collect data that is needed for defect
management in the given context and/or will be used for process improvement.

To manage the defect report in most environments, the following are mandatory:

• A defect title with a short summary of the anomaly

• A detailed description of the anomaly preferably including steps to reproduce the failure

• Severity of the impact on the system under test and/or the product stakeholders

• Priority to fix the anomaly

Additional important data items are often created by the defect management tool:

• Unique identifier for the defect report

• Date/time of creation of the defect report

Certified Tester

Advanced Level Test Management

V3.0 Page 60 of 87 2024/03/28

© International Software Testing Qualifications Board

• Name of the person who discovered and/or reported the anomaly

• Project and SDLC phase in which the anomaly was discovered

• Current state of the defect report

• Current owner (i.e., the person currently assigned to work on the defect)

• Change history such as the sequence of actions, including date/time information, taken by project
team members to isolate, repair and confirm the defect as fixed

• References (e.g. to test case, to connected defects).

Depending on context, further information (e.g. traceability) may also be collected in a defect report (see
the ISO/IEC/IEEE 29119-3 for more information). The following bullet points group the information
according to the intended purpose:

• To help defect resolution: The subsystem or component in which the defect lies, the specific
test item and its release number in which the anomaly was observed or the test environment in
which the defect was observed

• To assess the overall project status: Information to monitor progress, (e.g., risks, costs,
opportunities, and benefits associated with fixing or not fixing the defect, a description of any
available workaround, or requirements affected by the defects)

• To assess the status of a product increment in terms of product quality: The type of defect
(usually corresponding to a defect taxonomy), the work product in which the defect was
introduced, or the quality characteristic/sub-characteristic affected by the defect

• To assess the process capability: Information to monitor the effectiveness and efficiency of the
development processes (e.g., the SDLC phase of introduction, detection, and removal for the
defect or defect root cause)

2.3.6 Defining Process Improvement Actions Using Defect Report Information

As discussed in Section 2.3.5 of this syllabus, Defect Report Information, defect reports can be useful for
project status monitoring and reporting. While the implications of metrics on the test process are primarily
addressed in the Expert Test Management Syllabus, at the Advanced Test Management Level, test
managers should be aware of what defect reports mean to assessing the capability of the software
development and testing processes.

In addition to the test progress monitoring information mentioned in this syllabus, in section 2.1.2,
Monitoring, Control and Completion, and in section 2.1.3, Test Reporting, defect information should
support process improvement initiatives as discussed during retrospectives. Examples include:

• Using information about the phases of introduction, detection, and removal of defects to assess
phase containment and/or perform cost of quality analysis with the aim of suggesting ways to
improve defect detection effectiveness in each phase and minimize the cost associated with
defects

• Using information about the phase of introduction for analysis of the phases in which the largest
number of defects are introduced, to enable targeted improvements for defect prevention

• Using defect root cause information to determine the underlying reasons for defect introduction,
to enable process improvements that reduce the total number of defects

Certified Tester

Advanced Level Test Management

V3.0 Page 61 of 87 2024/03/28

© International Software Testing Qualifications Board

• Using defect location information to perform defect cluster analysis, to better understand technical
risks (for risk-based testing) and to enable re-factoring of troublesome components

• Using information about re-opened defects to assess the quality of debugging implementations

• Using information about duplicate and rejected defects to assess the quality of the defect report
creation

• Enable process improvements that reduce the total number of defects by introducing pro-active
measures to avoid errors upfront

The use of metrics to assess the test process effectiveness and efficiency is discussed in the Expert Test
Management Syllabus.

In some cases, teams decide not to track defects found during some or all phases of the SDLC. While
this is often carried out in the name of efficiency and for the sake of reducing process overhead, it greatly
reduces visibility into the process capabilities of software development and testing. This makes the
improvements suggested above difficult to carry out due to a lack of reliable support data.

Certified Tester

Advanced Level Test Management

V3.0 Page 62 of 87 2024/03/28

© International Software Testing Qualifications Board

3 Managing the Team – 225 minutes

Keywords

appraisal, cost of quality, defect, defect prevention, external failure, failure, internal failure

Learning Objectives for Chapter 3:

3.1 The Test Team

TM-3.1.1 (K2) Give examples of typical skills needed by test team members within four areas of
competence

TM-3.1.2 (K4) Analyze a given project context to determine required skills for test team members

TM-3.1.3 (K2) Explain typical techniques for skill assessments for test team members

TM-3.1.4 (K2) Differentiate between the typical approaches for developing skills of test team members

TM-3.1.5 (K2) Explain skills required to manage a test team

TM-3.1.6 (K2) Give examples of motivating and hygiene factors for test team members

3.2 Stakeholder Relationship

TM-3.2.1 (K2) Give examples for each of the four categories determining the cost of quality

TM-3.2.2 (K3) Apply a cost-benefit calculation to estimate the added value of testing for stakeholders

Certified Tester

Advanced Level Test Management

V3.0 Page 63 of 87 2024/03/28

© International Software Testing Qualifications Board

3.1 The Test Team

Introduction

Any team that performs test tasks is made up of individuals with different competencies. While in some
organizations teams are self-organized, in others test managers recruit and develop these teams. The
right mix of skills1 is a critical factor for all teams to successfully complete testing tasks.

The skills required by a test team member may change over time. It is important to select the correct
people for the test team and to provide adequate training and growth opportunities. In addition, people
outside the test team may provide additional specific skills.

This section looks at the fundamental process of analyzing and developing required skills of test team
members, as well as the skills that are required to lead or to coach a test team. This also includes
knowledge of factors that motivate or demotivate test team members and other factors to ensure
successful teamwork.

Each individual already has skills and can develop these skills further through various ways such as work
experience, education, and training. The ideal test team has all of the necessary skills for given test tasks
or it is only responsible for tasks of which it has the required skills. To be successful, a test team needs
various skills at different levels. Depending on the project context, some skills will be more important or
necessary than others. It may make sense to bring in external experts for specific testing tasks that are
beyond the capabilities of the test team.

3.1.1 Typical Skills within Four Areas of Competence

The skills of a person can be classified into four areas of competence (Sonntag & Schmidt-Rathjens,
2005) (Erpenbeck & von Rosenstiel, 2017)2:

• Professional competence: Consists of skills to perform specialized tasks. Examples include
skills in test techniques, technological, and business expertise in the application domain, as well
as project management skills.

• Methodological competence: Includes general skills that a person can use independently in a
domain and that enable the independent performance of complex or novel tasks. Examples
include analytical, conceptual, and judgmental skills.

• Social competence: Includes skills related to communication, cooperation, and conflict
management in intra and intercultural contexts. They enable one to relate to others in order to act
appropriately in a given situation and to achieve individual and shared goals. Examples include
communication skills, conflict resolution skills, ability to work in a team, adaptability and
assertiveness.

1 The term "skill" is used as an umbrella term for skills themselves, for having knowledge of something,
and for having the ability to do something.

2 The four areas of competence used here are based on the model described in these references, which
is widely used. There are other models described in the literature that group skills differently. These are
not part of this syllabus.

Certified Tester

Advanced Level Test Management

V3.0 Page 64 of 87 2024/03/28

© International Software Testing Qualifications Board

• Personal competence: Includes the ability and willingness to develop oneself and to develop
one's own talent, motivation, and willingness to perform as well as the development of specific
attitudes and an individual personality. Examples include self-management, personal
responsibility, ability to receive criticism, reliability, resilience, ability to act with confidence,
discipline, openness to changes, willingness to help and to learn, and the ability to delegate.

All areas of competence are important for the success of any testing team. As the methodological, social,
and personal competence is not specific to testing, the ISTQB® focuses on the development of
professional competence. This includes skills in managing test tasks, analyzing the test basis, designing
tests, identifying and analyzing risks and developing, configuring and maintaining test data, test
environments and test scripts.

3.1.2 Analyze Required Test Team Member Skills

Staffing is an activity within test planning. This includes the task of identifying the roles and skills of the
staff required to implement testing in the test strategy. A detailed context analysis is required to determine
the required skills for a project.

Professional and methodological competence

For testing, the focus is on the test skills required for the test tasks. Below are some examples:

• Test planning requires conceptual knowledge for developing a test strategy.

• Test monitoring and test control require project management skills for managing all test tasks.

• Test analysis requires analytical skills in analyzing the test basis and the product risks.

• Test design requires skills in test techniques to design test cases and conceptual knowledge for
designing the test environments.

• Test implementation requires judgment skills for the selection of tests, and technical expertise for
test script programming and setting up test environments.

• Test execution requires technical expertise to execute automated tests, performing exploratory
testing, and evaluating test results.

• Test completion requires the ability to communicate project outcomes and personal responsibility
for decisions made.

Different test types and test levels require different skills (e.g., business expertise in the application
domain to assess the functional suitability of a system, or technical expertise to assess the maintainability
of the code).

In addition, the project context provides valuable information about the required professional competence:

• The system domain requires business expertise in the application area such as information
technology, the automotive industry, or the gambling industry.

• The software and system architecture and technologies used in the project require, for example,
technical expertise in programming languages, interface technology or security vulnerabilities.

• The SDLC requires, for example, knowledge about test levels, testing roles, and specific test
techniques.

Certified Tester

Advanced Level Test Management

V3.0 Page 65 of 87 2024/03/28

© International Software Testing Qualifications Board

Social competence

In the context of testing, social competence enables test team members to behave appropriately in
relationships with other team members and to achieve the test objectives. In particular, it includes
communication, cooperation, and conflict resolution skills (e.g., dealing constructively with sub-optimal
test conditions or reporting defects to developers).

Software development and software testing are typically done by different members of (different) groups
who coordinate their tasks through communication. Communication skills, the ability to work in teams and
the ability to resolve conflicts are required for project success. However, the required level of social skills
may differ depending on the project context. For example, Agile software development may require higher
demands on social skills than document-centric sequential development models as well as offsite testing.

Personal competence

The effectiveness and efficiency of test team members also depends on their ability and willingness to
develop themselves, their skills, and their attitudes. For example, working in a self-organized Agile team
may require a higher level of self-management and discipline from all team members, while a test
manager of a hierarchical test team, for example, needs to be able to delegate work. A high degree of
reliability and resilience is often required, particularly in time-critical projects. In addition, willingness to
help, to learn and openness to change are important in a change process in all SDLC models.

3.1.3 Assessing Test Team Member Skills

In many cases, test teams are formed with existing staff. To understand the capabilities of the team
members and the need for personal development, test management needs to assess the existing test
team skills and compare these with the required skills, which may be documented in a skills matrix.

There are models to help teams and team members work more effectively (e.g., Meredith Belbin’s “Team
Roles”, DISG® or PCM®). According to Belbin (Belbin, 2010) teams work effectively when they are made
up of different personality and role types. These models help teams identify what skills they have, and
what skills they may be lacking.

The professional and methodological competence of test team members can be assessed by
demonstrating typical test tasks:

• Outlining a test strategy and discussing feedback with colleagues

• Reviewing the test basis and communicating the findings, which may also reveal communication
skills

• Determining test techniques to achieve specific test objectives for a given project context.

• Applying various test techniques appropriately

• Writing a test completion report that includes an assessment of the test results

In addition, skills can be assessed through external credentials, certifications, work experience, and
degrees.

Especially in Agile software development, teams identify skills that they required by regularly participating
in retrospectives and receiving feedback. Experienced coaches or mentors help them to develop their
skills and to identify and resolve knowledge gaps.

Certified Tester

Advanced Level Test Management

V3.0 Page 66 of 87 2024/03/28

© International Software Testing Qualifications Board

3.1.4 Developing Test Team Member Skills

A test team may not have all of the skills required at the start of a project. While a perfect set of
individuals may not be available, a strong team can balance the strengths and weaknesses of the
individuals.

The test management or the test team can identify necessary development needs by comparing required
with available skills in a skills matrix. On this basis, they can determine the approaches to competence
development:

• Training and education teach predefined knowledge and practices, usually in a (virtual)
classroom, (e.g., sending people to a training course, having training sessions in-house,
developing custom training, or using live e-learning courses).

• Self-study is a way of learning about a subject that involves studying alone, rather than in a
(virtual) classroom, (e.g., reading books, watching recorded videos, or researching internet
resources).

• Peer learning in which colleagues share knowledge, ideas, and experiences and learn with and
from each other.

• Mentoring or coaching are approaches where a team member who is new to a role gets individual
guidance by a coach, or knowledge, skills and/or experience from an experienced mentor. The
experienced person acts as an ongoing resource to provide advice and assistance.

• Training on the job is also well known and a mixture of self-study, peer learning and mentoring or
coaching.

Not all approaches to competence development are equally effective and efficient. Self-study and
training, for example, are well suited for developing professional and methodological competence.
Because of this, basic knowledge in testing can be developed by participating at ISTQB® training
sessions or by self-study based on the ISTQB® syllabi. However, for developing social and personal
competence, it is recommended to use approaches such as training and coaching, which are often more
promising than self-study. Social exchange, feedback and reflection are among the key success factors to
develop social and personal competence.

3.1.5 Management Skills Required to Manage a Test Team

Anybody who wants to successfully lead a test team must have management skills. These include
professional and methodological competence in fundamental management activities, (e.g., planning,
monitoring progress, controlling, and reporting). Specific test management knowledge and skills are
required for testing (e.g., knowledge of different test approaches, the development of test strategies, or
the use of test techniques or the applied SDLC).

Leading or coaching a test team means acting appropriately in relationships with other test team
members and having the ability and willingness to develop in changing circumstances. For this reason,
social and personal competence are essential success factors for leading a test team. This includes
resilience, the ability to delegate, and the capacity to be accepted by the test team. Further, it includes the
ability to assert test interests in the project, to promote benefits of testing, and to communicate and
resolve conflicts with all stakeholders.

To acquire people for the test team, skills in analyzing social, team and working conditions is required.
These skills help to ensure that the test team fits the working conditions or, if possible, that the working

Certified Tester

Advanced Level Test Management

V3.0 Page 67 of 87 2024/03/28

© International Software Testing Qualifications Board

conditions are adapted to the test team. In addition, test teams are subject to dynamic development
processes and therefore require situational skills (e.g., according to the phases of the Tuckman model of
small group development) (Tuckman, 1965) (Bonebright, 2010):

• Willingness to help test team members join into the test team (Forming)

• The ability to resolve conflicts within the test team (Storming)

• Discipline and target-oriented leadership to ensure agreed upon values and rules (Norming)

• The ability to delegate in order to give the test team personal responsibility (Performing)

• The ability to act with appreciation and confidence with departing test team members (Adjourning)

3.1.6 Motivating or Demotivating Factors for a Test Team in Certain Situations

Satisfied and motivated test team members increase productivity and performance and therefore have a
significant impact on the success of projects. When this is achieved, cross-training takes place informally,
the test team members can manage their own workload, and test management has more time to deal
with external issues. The motivation-hygiene theory (Herzberg, et al., 1993) distinguishes between
motivators and hygiene factors:

Motivators are perceived consciously and can lead to growth and satisfaction. This can include:

• Recognition and appreciation for the work done (e.g., incentives and any other individual
approach that test team members find appreciative)

• Increased responsibility and autonomy (e.g., to define the test processes in a test team)

• Interesting, meaningful, and challenging tasks that test team members perceive as attainable and
at the same time worth striving for (e.g., the selection and introduction of a new tool for test
automation)

• Professional advancement and development (e.g., the development of the experienced tester to a
test manager or test process owner)

Hygiene factors are usually taken for granted. Fulfilling them does not automatically lead to greater
satisfaction. If missing, they can have a demotivating effect on the test team members:

• Appropriate remuneration (e.g., market salary, paid overtime, good social benefits)

• Appreciative personnel policy and management style (e.g., lean management, realistic targets,
protection against external access and overload)

• Pleasant working conditions (e.g., unambiguous specifications, mature test objects, adequately
fixed defects, appropriate workplace, a stable test environment)

• Safety as an existential need (e.g., safe workplace and adhered to agreements)

• Good interpersonal relationships (e.g., with co-workers, supervisors)

Consequently, test management should continuously eliminate demotivating factors and at the same time
create and strengthen motivating factors.

Further information can be found in (Belbin, 2010) (Marston, 1999) (Kahler, 2008).

Certified Tester

Advanced Level Test Management

V3.0 Page 68 of 87 2024/03/28

© International Software Testing Qualifications Board

3.2 Stakeholder Relationships

Introduction

In test management, it is important to optimize testing to deliver good business value. Excessive testing
can result in unreasonable delays and costs that outweigh the benefits, while insufficient testing can lead
to delivering a product of low quality to users. The optimal approach lies between these two extremes. It
is the test manager’s responsibility to help stakeholders understand this balance and the added value of
testing in achieving this balance, while also keeping in mind, for example, the typical time constraints of a
project.

3.2.1 Cost of Quality

The benefits of testing are offset by quality costs. A means of quantifying the total cost of quality-related
efforts and defects is called cost of quality. Cost of quality involves classifying project and operational
costs into four categories related to product defect costs:

• Defect prevention costs: The cost of all activities that are planned and proactive to prevent poor
quality (e.g., qualification of the developers for their tasks such as training in the creation of
maintainable or secure code, reviewing the test basis as early as possible, and appropriate
communication within the team)

• Appraisal costs: The cost of all activities aimed at defect detection (e.g., performing static
testing and dynamic testing and reviewing work products)

• Internal failure costs: The cost of all reactive activities (e.g., fixing defects found during testing,
providing workarounds)

• External failure costs: The cost of all non-value added and reactive activities (e.g., loss of either
revenue, assets, human health, human life, or the environment, legal costs related to defect
fixing, testing, deployment, and support because of defective product being delivered to the
customer (“post release”), fixing field defects (flagged by customers)).

The total appraisal costs and internal failure costs are usually significantly less than the external failure
costs. This therefore makes testing extremely valuable. By determining the costs in these four categories,
test managers can create a convincing business case for testing.

There are more approaches that can be considered for defining the cost of quality. The ISTQB® syllabus
supports two of them. This syllabus is based on the Feigenbaum’s approach, and the ISTQB® Foundation
Level Syllabus V.4 presents Boehm’s approach (see the ISTQB® Foundation Level Syllabus V.4, Section
1.3, Testing Principles). These two approaches have been selected to reach a broader understanding of
the cost of quality. Feigenbaum’s approach (Feigenbaum, Nov/Dec 1956) considers quality as a
customer-oriented and company-wide process, while Boehm’s approach (Boehm, 1979) focuses on the
trade-off between the cost of prevention and the cost of failure in software development (Hadjicostas,
2004).

3.2.2 Cost-benefit Relationship of Testing

While most organizations consider testing valuable in some sense, few managers, including test
managers, can quantify, describe, or articulate that value. In addition, many test managers, test leads,
and testers focus on the operational details of testing (i.e., aspects specific to the test task or test level),

Certified Tester

Advanced Level Test Management

V3.0 Page 69 of 87 2024/03/28

© International Software Testing Qualifications Board

while ignoring the larger tactical and strategic (higher level) issues related to testing, that other
stakeholders, especially managers, care about.

Testing delivers benefits to the organization, project, and/or operation in both quantitative and qualitative
ways:

• Qualitative benefits include improved reputation for quality, smoother and more predictable
releases, increased confidence, protection from legal liability, and a reduction of risk of loss of
entire missions or even lives

• Quantitative benefits include defects found or prevented or fixed prior to release, defects that
were found to be known prior to release, (i.e., not fixed but documented, perhaps with
workarounds), cost benefits (Bohm 1981, Böhler 2008), reducing risk level by running tests, and
delivering information on project, process, and product status

An additional benefit of testing is that all stakeholders get adequate information to make informed
decisions as to whether the quality of the product is sufficient to go live, with or without defects.
Sometimes going live with known defects is much better than waiting to go live until the defects are
resolved. In these cases in which a defect can be tolerated, it is heavily dependent on the probability of
occurrence and severity of the defect.

The cost of quality per defect of testing is calculated as follows:

Average Savings per Defect = Average of External Failure Costs - (Average Appraisal Costs + Average
of Internal Failure Costs)

Total cost of quality = (Defect prevention costs + (Appraisal costs * Number of defects found before
release)) + ((Internal failure cost * Number of defects found before release) + (External failure costs *
Number of defects found after release))

As an example, assume that you have calculated the following cost of quality per defect for a product:

• Defect prevention costs: $180

• Average appraisal costs per defect: $500

• Average of internal failure costs per defect: $200

• Average of external failure costs per defect: $4,000

The average defect prevention costs, appraisal costs and internal failure costs are calculated using the
number of defects found prior to release, while the average external failure costs are calculated using the
number of defects found after release. With these values, we can calculate the average savings per
defect as follows:

Average Savings per defect = $4,000 – ($500+ $200) = $3,300.

Boehm´s curve is a graphical representation of the costs of fixing defects over time in the SDLC. This
concludes that testing should be done earlier in the SDLC to reduce the cost of fixing defects. Boehm’s
curve shows that internal failure costs, or the cost of fixing a defect, increases the later a defect is
discovered in the SDLC. Using this information the test manager should strive to find the optimal
relationship between defect prevention costs vs. internal and external costs.

The test effort must be based on the specific risk of the project and product and the risk a business is
willing to take. Too much testing can cause higher costs than the benefit of risk level reduction. If too little
is tested, missed defects can pose a high risk to generate higher costs than the omitted tests would have

Certified Tester

Advanced Level Test Management

V3.0 Page 70 of 87 2024/03/28

© International Software Testing Qualifications Board

costed. Risk-based testing (see Section 1.3 of this syllabus, Risk-Based Testing) supports the cost-
benefit relationship of testing by investing test effort levels proportional to the risk levels, and by
prioritizing tests based on their risk levels.

Test managers should understand which of these benefits and costs apply for their organization, project,
and/or operation, and be able to communicate the added value of testing in terms of these benefits and
the cost of quality per defect.

Certified Tester

Advanced Level Test Management

V3.0 Page 71 of 87 2024/03/28

© International Software Testing Qualifications Board

4 References

Standards
• IEC 61508 (2010) Functional safety of electrical/electronic/programmable electronic

safety-related systems - Parts 1 to 7

• ISO/IEC/IEEE 29119-2 (2021) ISO/IEC/IEEE 29119-2 Software and systems Engineering-
Software testing-Part 2 Test processes

• ISO/IEC/IEEE 29119-3 (2021) ISO/IEC/IEEE 29119-3 Software and systems Engineering-
Software testing-Part 3 Test documentation

ISTQB® Documents
• ISTQB® Certified Tester Agile Test Leadership at Scale Syllabus v2.0 (2023)

• ISTQB® Certified Tester Foundation Level Syllabus V.4 (2023)

• ISTQB® Certified Tester Expert Level Test Management Syllabus v1.0 (2011)

• ISTQB® Certified Tester Expert Level Improving the Test Process Syllabus v1.0.1 (2011)

Books
• Basili, V., Trendowicz, A., Kowalczyk, M., Heidrich, J., Seaman, C., Münch, J., & Rombach, D.

(2014). Aligning Organizations Through Measurement – The GQM+ Strategies Approach.
Springer International.

• Bath, G., & van Veenendaal, E. (2014). Improving the Test Process - chapter 6: Process for
Improvement. Rocky Nook.

• Belbin, R. M. (2010). Management Teams: Why They Succeed or Fail. London: Routledge.

• Black, R. (2009). Managing the Testing Process, 3rd Edition. John Wiley & Sons.

• Boehm, B. (1979). Software Engineering Economics. Prentice-Hall.

• Bonebright, D. A. (2010). 40 years of storming: a historical review of Tuckman's model of small
group development (1 Ausg., Bd. 13). Human Resource Development International, 1, 2010, Vol.
13.

• Craig, R., & Jaskiel, S. P. (2002). Systematic Software Testing. Artech House.

• Derby, E., & Larsen, D. (2006). Agile Retrospectives – Making Good Teams Great,. The
Pragmatic Bookshelf.

• Erpenbeck, J., & von Rosenstiel, L. (2017). Handbuch Kompetenzmessung. Stuttgart: Schäffer-
Poeschel.

• Fowler, M. (2010). Hybrid development processes. IEEE Software, 27(2), 57-63.

Certified Tester

Advanced Level Test Management

V3.0 Page 72 of 87 2024/03/28

© International Software Testing Qualifications Board

• Herzberg, F., Mausner, B., & Bloch Snyderman, B. (1993). Motivation to Work. London:
Routledge.

• Kahler, T. (2008). The Process Therapy Model: The Six Personality Types with Adaptations. Taibi
Kahler Associates, Inc.

• Marston, W. M. (1999). Emotions Of Normal People. London: Routledge.

• Sonntag, K., & Schmidt-Rathjens, C. (2005). Anforderungsanalyse und Kompetenzmodelle.
Wiesbaden: VS Verlag für Sozialwissenschaften.

• Tuckman, B. W. (1965). Developmental sequence in small groups (Bd. 63(6)). Psychological
Bulletin.

• van Ewijk, A. (2013). TPI NEXT – Business Driven Test Process Improvement,. Sogeti Nederland
B.V.

• van Solingen, R., & Berghout, E. (1999). The Goal Question Metric Method – A Practical Guide
for Quality Improvement of Software Development. McGraw-Hill.

• van Veenendaal, E. (2012). The PRISMA Approach: Practical Risk-Based Testing. UTN
Publishers.

• van Veenendaal, E. (2020). TMMi in the Agile world, version 1.4. TMMi Foundation.

• van Veenendaal, E., & Cannegieter, J. J. (2011). The Little TMMi – Objective-Driven Test
Process Improvement. UTN Publishers.

Articles
• Feigenbaum, Armand V. (Nov/Dec 1956) Harvard Business Review, Vol. 34 Issue 6, p93-101

• Hadjicostas, Evsevios (2004) Total Quality Management and Cost of Quality, Springer
https://link.springer.com/chapter/10.1007/978-3-662-09621-5_7

Web Pages
• www.tmmi.org Test Maturity Model integration (TMMi®); last visit January 31st, 2024

• www.tmap.net Test Process Improvement (TPI); last visit January 31st, 2024

• www.wikipedia.org/wiki/PDCA Plan-Do-Check-Act; last visit January 31st, 2024

The previous references point to information available on the internet and elsewhere. Even though those
references were checked at the time of publication of this syllabus, the ISTQB® cannot be held
responsible if the references are not available anymore.

https://link.springer.com/chapter/10.1007/978-3-662-09621-5_7
http://www.tmmi.org/
http://www.tmap.net/
http://www.wikipedia.org/wiki/PDCA

Certified Tester

Advanced Level Test Management

V3.0 Page 73 of 87 2024/03/28

© International Software Testing Qualifications Board

5 Appendix A – Learning Objectives/Cognitive Level of
Knowledge

The specific learning objectives that apply to this syllabus are shown at the beginning of each chapter.
Each topic in the syllabus will be examined according to its learning objective.

The learning objectives begin with an action verb corresponding to its cognitive level of knowledge as
listed below.

Level 1: Remember (K1)
The candidate will remember, recognize, and recall a term or concept.

Action verbs: Recall, recognize.

Examples

Recall the concepts of the test pyramid.

Recognize the typical objectives of testing.

Level 2: Understand (K2)

The candidate can select the reasons or explanations for statements related to the topic, and can
summarize, compare, classify, and give examples for the testing concept.

Action verbs: Classify, compare, differentiate, distinguish, explain, give examples, interpret, summarize

Examples Notes

Classify test tools according to their purpose and
the test activities they support.

Compare the different test levels. Can be used to look for similarities, differences,
or both.

Differentiate testing from debugging. Looks for differences between concepts.

Distinguish between project and product risks. Allows two (or more) concepts to be separately
classified.

Explain the impact of context on the test process.

Give examples of why testing is necessary.

Infer the root cause of defects from a given profile
of failures.

Summarize the activities of the work product review
process.

Certified Tester

Advanced Level Test Management

V3.0 Page 74 of 87 2024/03/28

© International Software Testing Qualifications Board

Level 3: Apply (K3)

The candidate can carry out a procedure when confronted with a familiar task or select the correct
procedure and apply it to a given context.

Action verbs: Apply, implement, prepare, use

Examples Notes

Apply boundary value analysis to derive test cases
from given requirements.

Should refer to a procedure/technique/process
etc.

Implement metrics collection methods to support
technical and management requirements.

Prepare installability tests for mobile apps.

Use traceability to monitor test progress for
completeness and consistency with the test
objectives, test strategy, and test plan.

Could be used in a LO that wants the candidate
to be able to use a technique or procedure.
Similar to 'apply'.

Level 4: Analyze (K4)

The candidate can separate information related to a procedure or technique into its constituent parts for
better understanding and can distinguish between facts and inferences. A typical application is to analyze
a document, software or project situation and propose appropriate actions to solve a problem or complete
a task.

Action verbs: Analyze, deconstruct, outline, prioritize, select

Examples Notes

Analyze a given project situation to determine which
black-box or experience-based test techniques should
be applied to achieve specific goals.

Examinable only in combination with a
measurable goal of the analysis.
Should be of form 'Analyze xxxx to xxxx' (or
similar).

Prioritize test cases in a given test suite for execution
based on the related product risks.

Select the appropriate test levels and test types to
verify a given set of requirements.

Needed where the selection requires analysis.

Reference

(For the cognitive levels of learning objectives)

Anderson, L. W. and Krathwohl, D. R. (eds) (2001) A Taxonomy for Learning, Teaching, and Assessing:
A Revision of Bloom's Taxonomy of Educational Objectives, Allyn & Bacon

The specific learning objectives that apply to this syllabus are shown at the beginning of each chapter.

Certified Tester
Advanced Level Test Management

V3.0 Page 75 of 87 2024/03/28

© International Software Testing Qualifications Board

6 Appendix B – Business Outcomes Traceability Matrix with Learning Objectives

This section lists the traceability between the Business Outcomes and the Learning Objectives of The Advanced Level Test Management Syllabus.

Business Outcomes: Advanced Level Test Management BO1 BO2 BO3 BO4 BO5 BO6 BO7 BO8 BO9 BO10 BO11

TM_01

Manage testing in various software
development project by applying test
management processes established for the
project team or test organization

 12

TM_02
Identify test stakeholders and software
development lifecycle models that are
relevant in a given context

 4

TM_03

Organize risk identification and risk
assessment sessions within any software
development lifecycle and use these results
to guide testing to reach the test objectives

 6

TM_04
Define a project test strategy consistent
with the organizational test strategy and
project context

 11

TM_05
Continuously monitor and control testing to
achieve project objectives

 4

TM_06
Assess and report test progress to project
stakeholders

 3

TM_07
Identify necessary skills and develop those
skills within your team

 6

TM_08
Prepare and present a business case for
testing in different contexts that outlines the
costs and expected benefits

 5

Certified Tester
Advanced Level Test Management

V3.0 Page 76 of 87 2024/03/28

© International Software Testing Qualifications Board

Business Outcomes: Advanced Level Test Management BO1 BO2 BO3 BO4 BO5 BO6 BO7 BO8 BO9 BO10 BO11

TM_09

Lead test process improvement activities in
projects or software development product
streams and contribute to organizational
test process improvement initiatives

 5

TM_10
Planning the test activities and estimating
the test effort

 9

TM_11
Create defect reports and a defect workflow
suitable for a software development
lifecycle

 6

Unique
LO

Learning Objective
K-

Level

1 Managing the Test Activities

1.1 The Test Process

TM-1.1.1 Summarize test planning K2 X X

TM-1.1.2 Summarize test monitoring and test control K2 X X

TM-1.1.3 Summarize test completion K2 X X

1.2 The Context of Testing

TM-1.2.1
Compare why different stakeholders are
interested in testing

K2 X X

TM-1.2.2
Explain why stakeholders' knowledge is
important in test management

K2 X X

TM-1.2.3
Explain testing in a hybrid software
development model

K2 X X

Certified Tester
Advanced Level Test Management

V3.0 Page 77 of 87 2024/03/28

© International Software Testing Qualifications Board

Business Outcomes: Advanced Level Test Management BO1 BO2 BO3 BO4 BO5 BO6 BO7 BO8 BO9 BO10 BO11

TM-1.2.4
Summarize test management activities for
various software development lifecycles

K2 X X X

TM-1.2.5
Compare test management activities at
various test levels

K2 X X

TM-1.2.6
Compare test management activities for
various test types

K2 X X

TM-1.2.7
Analyze a given project and determine test
management activities, emphasizing test
planning, test monitoring, and test control

K4 X X

1.3 Risk-based Testing

TM-1.3.1
Explain the various measures that risk-
based testing takes to respond to risks

K2 X

TM-1.3.2
Give examples of different techniques a
test manager can use for identifying risks
related to product quality

K2 X

TM-1.3.3
Summarize the factors that determine the
risk levels related to product quality

K2 X

TM-1.3.4
Select appropriate test activities to mitigate
risks according to their risk level in a given
context

K4 X

TM-1.3.5
Differentiate between heavyweight and
lightweight examples of risk-based testing
techniques

K2 X

Certified Tester
Advanced Level Test Management

V3.0 Page 78 of 87 2024/03/28

© International Software Testing Qualifications Board

Business Outcomes: Advanced Level Test Management BO1 BO2 BO3 BO4 BO5 BO6 BO7 BO8 BO9 BO10 BO11

TM-1.3.6
Give examples of success metrics and
difficulties associated with risk-based
testing

K2 X

1.4 The Project Test Strategy

TM-1.4.1 Explain typical choices for a test approach K2 X

TM-1.4.2
Analyze an organizational test strategy and
the project context to select the appropriate
test approach

K4 X

TM-1.4.3
Use the S.M.A.R.T. goal methodology to
define measurable test objectives and exit
criteria

K3 X

1.5 Improving the Test Process

TM-1.5.1
Explain how to use the IDEAL model for
test process improvement on a given
project

K2 X

TM-1.5.2

Summarize the model-based improvement
approach to test process improvement and
understand how to apply it on a project
context

K2 X

TM-1.5.3

Summarize the analytical-based
improvement approach to test process
improvement and understand how to apply
it on a project context

K2 X

TM-1.5.4
Implement a project or iteration
retrospective to evaluate test processes
and discover testing areas to improve

K3 X

Certified Tester
Advanced Level Test Management

V3.0 Page 79 of 87 2024/03/28

© International Software Testing Qualifications Board

Business Outcomes: Advanced Level Test Management BO1 BO2 BO3 BO4 BO5 BO6 BO7 BO8 BO9 BO10 BO11

1.6 Test Tools

TM-1.6.1
Summarize the best practices for tool
introduction

K2 X

TM-1.6.2
Explain the impact of different technical and
business aspects when deciding on a tool
type

K2 X

TM-1.6.3
Analyze a given situation to create a plan
for tool selection, covering risks, costs, and
benefits

K4 X

TM-1.6.4
Differentiate among the stages of the tool
lifecycle

K2 X

TM-1.6.5
Give examples for metric collection and
evaluation by using tools

K2 X X

2 Managing the Product

2.1 Test Metrics

TM-2.1.1
Give examples of metrics to achieve the
test objectives

K2 X

TM-2.1.2
Explain how to control test progress using
test metrics

K2 X

TM-2.1.3
Analyze test results to create test reports
that empower stakeholders to make
decisions

K4 X X

2.2 Test Estimation

TM-2.2.1
Explain the factors that need to be
considered in test estimation

K2 X X X

Certified Tester
Advanced Level Test Management

V3.0 Page 80 of 87 2024/03/28

© International Software Testing Qualifications Board

Business Outcomes: Advanced Level Test Management BO1 BO2 BO3 BO4 BO5 BO6 BO7 BO8 BO9 BO10 BO11

TM-2.2.2
Give examples of factors which may
influence test estimates

K2 X X X

TM-2.2.3
Select an appropriate technique or approach for
test estimation for a given context

K4 X X X

2.3 Defect Management

TM-2.3.1
Implement a defect management process,
including the defect workflow, that can be
used to monitor and control defects

K3 X

TM-2.3.2
Explain the process and participants
required for effective defect management

K2 X

TM-2.3.3
Explain the specifics of defect management
in Agile software development

K2 X X

TM-2.3.4
Explain the challenges of defect
management in hybrid software development

K2 X X

TM-2.3.5
Use the data and classification information
that should be gathered during defect
management

K3 X

TM-2.3.6
Explain how defect report statistics can be
used to devise process improvement

K2 X X

3 Managing the Team

3.1 The Test Team

TM-3.1.1
Give examples of typical skills needed by
test team members within four areas of
competence

K2 X

Certified Tester
Advanced Level Test Management

V3.0 Page 81 of 87 2024/03/28

© International Software Testing Qualifications Board

Business Outcomes: Advanced Level Test Management BO1 BO2 BO3 BO4 BO5 BO6 BO7 BO8 BO9 BO10 BO11

TM-3.1.2
Analyze a given project context to
determine required skills for test team
members

K4 X

TM-3.1.3
Explain typical techniques for skill
assessments for test team members

K2 X

TM-3.1.4
Differentiate between the typical
approaches for developing skills of test
team members

K2 X

TM-3.1.5 Explain skills required to manage a test team K2 X

TM-3.1.6
Give examples of motivating and hygiene
factors for test team members

K2 X

3.2 Stakeholder Relationships

TM-3.2.1
Give examples of each of the four
categories determining the cost of quality

K2 X

TM-3.2.2
Apply a cost-benefit calculation to estimate
the added value of testing for stakeholders

K3 X X

Certified Tester

Advanced Level Test Management

V3.0 Page 82 of 87 2024/03/28

© International Software Testing Qualifications Board

7 Appendix C – Release Notes

The ISTQB® Advanced Level Test Management Syllabus v3.0 is a major update based on the Advanced
Level Syllabus Test Manager 2012. For this reason, there are no detailed release notes per chapter and
section. However, a summary of principal changes is provided below.

In this version all Learning Objectives (LOs) have been edited to make them atomic, and to create one-to-
one traceability between LOs and syllabus sections, thus not having content without also having a LO.
The goal is to make this version easier to read, understand, learn, and translate, focusing on increasing
practical usefulness and the balance between knowledge and skills.

This major release has made the following changes:

• Size reduction of the overall syllabus. A syllabus is not a textbook, but a document that serves to
outline the basic elements of an advanced course on software testing, including what topics
should be covered and at what level. Therefore, in particular:

o In most cases examples are excluded from the text. It is a task of a training provider to
provide the examples, as well as the exercises, during the training

o The “Syllabus writing checklist” was followed, which suggests the maximum text size for
LOs at each K-level (K2 = maximum of 1,500 nonblank characters, K3 = maximum of
2,500 nonblank characters, K4 = maximum of 3,000 nonblank characters, +/- 20%)

• Reduction of the number of LOs compared to the CTAL TM 2012 Syllabus

o 36 K2 LOs compared with 39 LOs in CTAL TM 2012

o 5 K3 LOs compared with 12 LOs in CTAL TM 2012

o 7 K4 LOs compared with 10 LOs in CTAL TM 2012

• Complete structure of the syllabus is revised

• Alignment with the ISTQB® Foundation Level Syllabus V.4 is complete

• Major changes in 2012 former Chapter 1 (Test Process)

o Restricted to Managing the Test Activities (Test Planning, Test Monitoring, Test Control,
and Test Completion)

o Integrated as a section in the new chapter “Managing the Test Activities”

• New chapter Managing the Test Activities

o Section 1.1 – The Test Process: see above

o Section 1.2 – The Context of Testing: Expanded to cover non-sequential software
development models

o Section 1.3 – Risk-Based Testing: Completely rewritten to make it more applicable on a
project level

o Section 1.4 – The Project Test Strategy: Because the test plan is already defined in the
ISTQB® Foundation Level Syllabus V.4, the focus is on selecting the adequate test
approach and how to define measurable test objectives

Certified Tester

Advanced Level Test Management

V3.0 Page 83 of 87 2024/03/28

© International Software Testing Qualifications Board

o Section 1.5 – Improving the Test Process: Integrating this into Managing the Test
Activities, showing how to apply it in a project context, and implementing it using
retrospectives within an iteration or project

o Section 1.6 – Test Tools: Introducing tools was moved from the ISTQB® Foundation
Level Syllabus V.3.1 (is not present in ISTQB® Foundation Level Syllabus V.4)

• New chapter Managing the Product

o Section 2.1 – Test Metrics: Former sections defining metrics and use of metrics, Test
Metrics

o Section 2.2 – Test Estimation: The ISTQB® Foundation Level Syllabus V.4 already
covers the calculation of test estimation. Expanded to select at a K4 level adequate test
estimation techniques and the use of test estimates across the SDLC models

o Section 2.3 – Defect Management: aligned with the latest editions of standards and
expanded to use in Agile and hybrid software development

• New chapter Managing the Team

o Section 3.1 – The Test Team: The main topics are the same as in the TM 2012 Syllabus.
Identify the individual skills and compose the test teams

o Section 3.2 – Stakeholder Relationships: It is the former ATM 2012 Syllabus section
entitled “Business Value of Testing”

• Major changes and deleted sections/chapters in CTAL TM Syllabus 2012

o Section on Distributed, Outsources and Insources Testing removed

o Section on Managing the Application of Industry Standards removed

o Chapter on Reviews removed

o Subsections on Improving the Test Process CTP and STEP removed

o Subsections on Test Analysis, Test Design, Test Implementation and Test Execution
removed

Certified Tester

Advanced Level Test Management

V3.0 Page 84 of 87 2024/03/28

© International Software Testing Qualifications Board

8 Appendix D – Domain-Specific Keywords

Term Name Definition

goal question metric (GQM) An approach to software measurement using a three-level model
consisting of a conceptual level (goal), an operational level
(question) and a quantitative level (metric).

IDEAL An organizational improvement model that serves as a roadmap
for initiating, planning, and implementing improvement actions.

indicator A measure that provides an estimate or evaluation of specified
attributes derived from a model with respect to defined
information needs.

measure The number or category assigned to an attribute of an entity by
making a measurement.

metric A measurement scale and the method used for measurement.

planning poker A consensus-based estimation technique, mostly used to
estimate effort or relative size of user stories in Agile software
development. It is a variation of the Wideband Delphi method
using a deck of cards with values representing the units in
which the team estimates.

Three-point estimation An expert-based technique, three estimations are made by the
experts: the most optimistic estimation (a), the most likely
estimation (m) and the most pessimistic estimation (b). The final
estimate (E) is their weighted arithmetic mean.

Wideband Delphi An expert-based test estimation technique that aims at making
an accurate estimation using the collective wisdom of the team
members.

Certified Tester

Advanced Level Test Management

V3.0 Page 85 of 87 2024/03/28

© International Software Testing Qualifications Board

9 Appendix E – Trademarks

CMMI® is a registered trademark in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ISTQB® is a registered trademark of International Software Testing Qualifications Board.

TMMi® is a registered trademark of TMMi Foundation.

TPI-Next® is a registered trademark of Sogeti, The Netherlands.

Certified Tester

Advanced Level Test Management

V3.0 Page 86 of 87 2024/03/28

© International Software Testing Qualifications Board

10 Index

All terms are defined in the ISTQB® Glossary (http://glossary.istqb.org/).

anomaly 48, 56

appraisal 63

Benchmark 38

cost of quality 56, 62, 63, 71, 83

defect 48

defect prevention 56, 63, 70

defect report 48, 56, 57, 58, 59, 60, 61, 82

defect triage committee 48

defect workflow 11, 13, 48, 57, 58, 77, 82

experience-based testing 16, 35

external failure 63

failure 32, 47, 48, 56, 57, 59, 61, 70

false-negative result 56

functional testing 16, 25

hybrid software development model 13, 16,
22, 54, 78, 84

IDEAL 38

incremental development model 16

internal failure 63

iterative development model 16

metric 16, 17, 48, 51, 52, 55, 81, 86

non-functional testing 16, 25

phase containment 56

planning poker 48, 55

priority 61

process metrics 49

product metrics 49

product risk 16, 28, 50

project metrics 49

quality risk 16, 28, 29, 32, 33

retrospective 13, 16, 17, 38, 41, 80

return on investment (ROI) 44

risk analysis 16, 28, 30, 32, 33

risk assessment 11, 16, 28, 29, 76

risk identification 11, 16, 28, 29, 33, 76

risk impact 16, 29, 30, 32, 33

risk level 16, 17, 28, 29, 30, 31, 33, 70, 79

risk likelihood 16, 29, 30, 32, 33

risk management 16, 26, 28

risk mitigation 16, 28, 30

risk monitoring 16, 28

risk-based testing 13, 16, 17, 28, 29, 31, 32,
33, 35, 62, 78, 79

root cause 62

S.M.A.R.T goal methodology 16

sequential development model 16, 34, 41,
55, 59, 60

severity 61

software development lifecycle 11, 16, 20,
76, 77, 78

test completion 13, 16, 18, 19, 20, 41, 49, 66,
78

test control 13, 16, 18, 19, 31, 49, 50, 65, 77,
78

test estimation 48, 53, 54, 55, 81, 85

test level 16, 18, 20, 23, 51

Test Maturity Model integration 16, 39, 73

test monitoring 13, 16, 18, 19, 28, 31, 49, 50,
77, 78

test objective 16, 36, 48

http://glossary.istqb.org/

Certified Tester

Advanced Level Test Management

V3.0 Page 87 of 87 2024/03/28

© International Software Testing Qualifications Board

test plan 16, 18, 19, 21, 34, 36, 60, 75, 84

test planning 13, 16, 18, 19, 28, 29, 30, 32,
34, 39, 49, 53, 65, 77, 78

test process improvement 11, 13, 16, 17, 38,
39, 40, 41, 77, 80

test progress 11, 13, 20, 21, 31, 41, 48, 50,
51, 52, 60, 61, 75, 76, 81

test strategy 11, 13, 16, 17, 19, 21, 22, 34,
35, 36, 40, 49, 59, 65, 66, 75, 76, 79

test type 16

TMMi 39

TPI NEXT 16, 39, 40

