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INFORMATION RESEARCH
an international electronic journal
ISSN 1368-1613

Volume 10 No 2 January, 2005

Editorial

Papers presented at ISIC 2004: the 5th Information Seeking in
Context Conference, Dublin, Ireland, 1-3 September, 2004

Keynote address: Carol Kuhlthau
Towards collaboration between information seeking research and
information retrieval
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Replying to @msweeny and @MDoornenbal
The status and role of consciousness is a complex one—perhaps see

frontiersin.org/articles/10.33...—but more than | intended to address here;

but | think we must certainly reject being able to execute some list of tasks as
a sufficient criterion for intelligence

Artificial Intelligence: Does Consciousness Matter?
Artificial Intelligence: Does Consciousness

=l Matter?Consciousness plays an important role in ...
&’ frontiersin.org
QO Tl L T
Christopher Manning @chrmanning - Oct 29 eon
Replying to @stanfordnlp @msweeny and @MDoornenbal
As someone notes in a later comment, even though | wasn't thinking of it at
the time | wrote my definitions, the position | adopt | |'= e Jarto the one

/pdf/1911.01547... Daedalis
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@fchollet argues for in much greater detail in his pap’E{ VOrg.
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November 5, 2019

Abstract

To make deliberate progress towards more intelligent and more human-like artificial
systems, we need to be following an appropriate feedhack signal: we need to be able to
define and evaluate intelligence in a way that enables comparisons belween two systems,
as well as comparisons with humans, Over the past hundred years, there has been an abun-
dance of attempts to define and measure intelligence, across both the fields of psychology
and Al We summarnize and critically assess these definitions and evaluation approaches,
while making apparent the two historical conceplions of intelligence that have impliciily
guided them, We note that in practice, the contemporary Al community still gravitates fo-
wards benchmarking infelligence by comparing the skifl exhibited by Als and humans af
specific tasks, such as board games and video games, We argue that solely measuring skill
al any given (ask falls short of measuring infellizence, because skill is heavily modulated
by prior knowledee and experience: unlimited priors or unlimited training data allow ex-
perimeniers o “buy™ arbitrary levels of skills [or a sysiem, in a way (hal masks the sysiem’s
own generalization power. We then articulate a new formal definition of intellizence based
om Algorithmic Information Theory, describing inlelligence as skill-acquisition efficiency
and highlighting the concepls of scope, generalization difficulty, priors, and experience, as
crilical preces o be accounted lor in characlerzang inlelligent systems. Using (his deh-
nilion, we propose a sel of gudelines for whal a general Al benchmark should look like.
Finally, we present a new benchmark closely Tollowmg these guidehnes, the Absirachon
and Reasoning Corpus (ARC), built upon an explicit setl of priors designed (o be as close as
possible to innate human priors. We arguc that ARC can be used to measure a human-like
form of seneral Awid intcllisence and that it cnables fair pencral intellizence comparisons
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Information Behavior Mai (2016)

Quality of Information is part of a spectrum

Data >> Information >> Knowledge

Quality depends on individual characteristics
* Contextual
e Situational
* Environmental
* Emotional



Consciousness

Humans have a knowledge of core concepts through
experiencing the physical world

Consciousness allows for building more robust mental
maodels that enable inference and prediction

HumMan consciousness entails: (that ML does Nnot possess)
Introspection (self awareness)

Empathy

Transfer learning

Adaptation

Novelty

AMDbiguity
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Dueling Hierarchies of Needs

Al User Experience

THE DATA SCIENCE v
HIERARCHY OF NEEDS Al lnterfacnf?llo;u:zers 1o
LEADREl\llEII:\JG complete tasks quickly

and accurately

A/B TESTING,

LEARN/OPTIMIZE EXPERIMENTATION, Aesthetics
SIMPLE ML ALGORITHMS interface looks unique.
ANALYTICS, METRICS, friendly and professional )
AGGREGATE/LABEL SEGMENTS, AGGREGATES, higher needs
FEATURES, TRAINING DATA ) basic needs
Information
CLEANING, ANOMALY DETECTION, PREP interface has correct, readable

EXPLORE/TRANSFORM

and up-to-date content

MOVE/STORE —
Functionality
interface works and

COLLECT doesn't break
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Neural IR Intent Focus

Compositionality Principle

Scan Browsing: information scanned based on relevance to
changing tasks or transient information goals (Berrypicking)

Review browsing: some information is integrated into goal
after deeper review (interest|

Customer intent actions:
e Query terms & refinements
e Dwell time
e # Of results considered
* Time to first action
e (lick counts
e First result clicked rank

L



Neural IR Intent Deconstruction

Query intent = individual words that are possible indicators of
customer Intent. Uses term cooccurrence (proximity) models to
improve retrieval relevance

Intent words = articulated by customer to refine their
information needs

Content words = core topic of guery

Content unites further specify the need; intent units further
modify the need in one of many possible ways
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Design for Neural IR
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Design for Machine Learning (together)

Define learning problem
* |Inputs
* Qutputs
* Types of training data needed

Generate good data
* Completeness
* ACCuUrate
e Consistent
* limely

Sketch out user and data flow (decision trees|
Test assumptions against prototype
Start with simple mechanism and move to complex
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Start with Guiding Principles for Al

Principles Applications

Principles are objectives and goals, the end state

Notes are the system rules, loglic, rewards and
feedback loops



Create Persona with an Empathy Profile

Find qualitative dimensions that define user
understandings

Represent the emaotions, Not Just the needs

terate as system learns



Scenario Goals

Philippe is the responsible for the Al implementation  » Help knowledge workers be more productive
at his company. He needs to define the models that
will be used, and report to the Executive Board.

Philippe Hudson

Global IT Evangelist at big software enterprise * Reduce risk from error-prone processes

* Reduce company costs

USE CASE DEFINITION MODEL DEFINITION TRAIN MODELS TEST MODELS TRACK & ANALYZE

EVALUATE & REPORT

STEPS
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Map out the Al Journey

Define and Train Model: Use Model:
o= N F N
o==[° o=—1° —
8

Define Model
Trained Model

o)
Description of Workflow:

o Collect training data
with needed
volume and quality
(fit for purpose and
diverse enough to
avoid a biased

Collect
Training Data

Preprocess Data
Test Model
Export Model

Train Model

o Process data in such
a way that relevant
features for the
problem statement
are identified and
prepared. Also

Choose appropriate
algorithm(s) for the
given problem.
Design model and
tune parameters.

o Iteratively modify
the model until it
performs well
against the training
and validation data.

o Expose the trained
model to new data /
events. Model will
return a prediction
accordingly. If a
feedback loop is

model later in the
process).

separate data into
training and
validation set.

Model is trained
based on the given
data. Validate how
well the model
performs.

Test the model
against the hold out
set from the
collected data. Then
export the model
for prodi

included, model
could also improve
itself.
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A at the Helm: Leading with Information

Bob Boiko

JA Summit 2018 Main Conference Talk

Topic(s): career development, information architecture, and strategy
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Use Soft Information Architecture

Design for evolutionary processes
* Virtual reality
* Interactive architecture

* Al (self-organizing, educating, revising technology)
Status Quo Architecture= goal oriented
Soft Architecture = behavior-based

Designer must think within, Not Just about the system
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Bolo: Heuristic Traps

Name: Siegel, Benjamin
Race: White  Sex: Male
DOB: 2/28/1906

Height:

Weight:

Hair: Brown

Eyes: Blue

ID No.:

LEA: Beverly Hills, CA




Why This?

Why Now?
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Algorithmic Bias

MIT CSAIL &

CERIL MIT_CSAIL

Mew study shows strong gender bias in image-recognition
algorithms from Google, Amazon & Microsoft,

Photo of man: "official " "speaker"
Photo of woman: "hairstyle," "smile"

Paper: bit.hy/36VEkJ<

More: bit.ly/38U31x0 (i onite @WIRED)
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Poorly Conceived Objective Outcome

Built as a proof of concept
for Al gone wrong with
blased data

MIT Al'Lab

Dataset was a sub-reddit
dedicated to document the
“disturbing reality of death.”

ABOUT INKBLOTS TEAM

NORMAN

World's first psychopath Al

EXPLORE WHAT NORMAN SEES




Poorly Designed Training Data

Bill Slawski @bill_slawski - 125
Microsoft unveils a better-behaved chatbot after its last one became a NAZI

Microsoft unveils a better-behaved chatbot after its last one became ...

Tech giant takes another pop at the artificial inteligence game with the
release of a politer(and slightly stupider) machine mind 34 tems
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Key Takeaways

Broaden scope of awareness
Understand the landscape and influences

Embrace new tools and methodologies



Thank You

Fmbrace, engage, define, direct
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