Verifying System-Level Properties of Neural-Network
Robotic Controllers

Ziggy Attala, Ana Cavalcanti, Jim Woodcock

ROBOSTAR

robostar.cs.york.ac.uk

28th May 2024

—~ ¢ Engineering and
Y , Royal Academy =S . Physical Sciences
//@ff of Engineering 4 Research Council
Jim Woodcock

RoboStar 1/38

https://robostar.cs.york.ac.uk/
robostar.cs.york.ac.uk

Outline

Overview

Motivation

RoboStar Vision

Modelling ANNs RUBUSTA R
Specifying ANNs

Conclusions

Jim Woodcock

RoboStar 2/38

robostar.cs.york.ac.uk

Overview

[18}

Overview

Verifying learning-enabled robotic systems is challenging.

Existing techniques and tools for verifying ANNs: component-level properties.
Our work: Verifying robotic systems with ANN control components.

Model and verify entire control software with system-level properties.

Focus on trained, fully connected, ReLU neural networks for control.
Combine behavioural models and ANN models.

Combine traditional and ANN-specific verification tools.

We use RoboChart: a domain-specific robot modelling and verification framework.

vV vV vy VvV VvV VvV VY

Strategy for automated proof using Isabelle/HOL and Marabou.

Jim Woodcock

RoboStar 3/38

robostar.cs.york.ac.uk

Overview o Modelling ANNs

oe

The Paper and the Thesis

» Ziggy Attala, Ana Cavalcanti, Jim Woodcock.

Modelling and Verifying Robotic Software that Uses
Neural Networks.

ICTAC 2023: 15-35. Springer LNCS.

» Ziggy Attala.

Verification of RoboChart Models with Neural
Network Components.

PhD Thesis, University of York. October 2023.

Jim Woodcock

RoboStar 4/38

robostar.cs.york.ac.uk

Motivation

90000000

Outline

Motivation

ROBOSTAR

Jim Woodcock

RoboStar 5/38

robostar.cs.york.ac.uk

Motivation
0®000000

Motivation
» Robots are leaving their cages.
» Trustworthiness requires verification.

» Current approach to software
engineering: ad hoc, code centric.

Domain-specific modelling languages.
Tractable mathematical models.
Challenge: integrated reasoning.
Systems engineering.

Heterogeneous models.

Verification tools: focused on ANN.

vVvyVvyVvVVvyyvyy

Neural networks for control.

Jim Woodcock
RoboStar 6/38

robostar.cs.york.ac.uk

Motivation

00@00000

Example 1. Controller for Robot Motor

Neural network controller. Single sensor input: floor gradient.

Goal: adjust the motor to maintain robot speed.

Input Layer: single neuron representing the sensor reading.

Output Layer: single neuron converts gradient to motor input voltage.

Gradient voltage (0-1V) needs to be scaled and mapped to motor voltage (0-6V).
Multiply by scaling factor 5 to map into motor voltage range.

Requirement: motor requires a minimum voltage of 1V to start moving.

Add bias of 1V could be added to the scaled neuron output.

vV vV vy VvV V VvV VY

Scaled and biased neuron output converted to actual voltage signal by DAC.

Jim Woodcock

RoboStar 7/38

robostar.cs.york.ac.uk

Motivation tar Vision

[e]e]e] le]elele)

Example 2: Controller for Robotic Arm

» Neural network controller: robot arm for sorting objects based on their weight.
» Hidden layer: two neurons to capture different features of the input.
» The two neurons capture different weight ranges.

> Allows network to make more accurate sorting decisions.

Jim Woodcock

RoboStar 8/38

robostar.cs.york.ac.uk

Motivation

[e]e]e]e] Jelele)

Example 3: Controller for Robot with Autonomous Navigation

Robot controller: steering angle based on distance to nearest sensed obstacle.
Two hidden layers compute different features from the input data.

Hidden Layer 1. Responsible for low-level feature distance to nearest obstacle.
Identifying different distance ranges (e.g., near, medium, far).

Recognising changes or gradients in the distance values.

Extracting simple features related to the obstacle’s proximity.

Hidden Layer 2. Compute higher-level representations from low-level features.
Map distance to angle ranges: sharp turn, moderate turn, slight turn, straight.

Identify patterns that need obstacle avoidance or course correction.

VvV Vv Vv VvVVvVvyVvVVvYVYyYy

Learn non-linear map between distance and required angle adjustment.

Jim Woodcock

RoboStar 9/38

robostar.cs.york.ac.uk

Motivation

[e]e]e]e]e] lele)

Example 4. Neural Network with Probabilistic Output

Robot arm Grasp and manipulate objects of different shapes, sizes, and materials.
Predict probability distribution over different grasping strategies or configurations.
Use input information about the object and its environment.

Input Layer 3D point cloud data: depth sensors or cameras.

Information about the robot’s current state: arm joint angles, gripper position.
Hidden Layers Extract spatial features and patterns.

Output Layer Multiple neurons, each representing a different grasping strategy.
Strategies: top grasp, side grasp, pinch grasp, etc.

Output Predicted probability for corresponding grasping strategy.

vV Vv VvV VvVvVYyYVYyYyYy

Activation Function: Softmax. Normalises scores.

Jim Woodcock

RoboStar 10/38

robostar.cs.york.ac.uk

Motivation

[e]e]e]ele]e] o)

Why use Neural Networks for Control?

» Handling complex and non-linear environments: Robot control in dynamic, unstructured
environments. Learn complex, non-linear mappings from data.

> Adaptability and generalisation: New situations not explicitly covered in training data. Operating
environments with changing conditions and novel scenarios.

» Learning from Experience: Training with reinforcement learning to improve behaviour.
Continuously adapt to changing conditions and new tasks.

» Handling High-dimensional Data: Process and integrate high-dimensional data from sensors.
Extract relevant features. Challenging for traditional algorithms.

» End-to-End Control: Training maps raw sensor data directly to control outputs. Enables
end-to-end control without feature engineering or state estimation.

» Parallel Processing: Real-time control tasks require low latency and high throughput. Use GPUs
and specialised hardware accelerators.

» Scalability and Modularity: Modular and scalable ANNs. Integrate new sensors, control outputs,
and task-specific modules. No control system redesign.

Jim Woodcock

RoboStar 11/38

robostar.cs.york.ac.uk

Motivation

[e]e]e]ele]ele])

Why not use Neural Networks for Control?

Replacing traditional controller with ANNs is challenging.

It needs large amounts of training data.

The controller is potentially unstable.

There are correctness and safety concerns.

There are difficulties in interpreting and explaining the learned control policies.
In practice, many robotic systems use a hybrid approach.

ANNs: specific tasks or modules. Perception, motion planning, low-level control.
Traditional controllers handle higher-level decision-making.

Usually task planning and safety-critical operations.

Engineering decisions: choice between traditional and ANN controllers.

VVVYVyVYyVYVVYYVYYVYY

Depends on specific robot application requirements, constraints, trade-offs.

Jim Woodcock

RoboStar 12 /38

robostar.cs.york.ac.uk

RoboStar Vision Y ANNs

900000000

Outline

RoboStar Vision

ROBOSTAR

Jim Woodcock

RoboStar 13/38

robostar.cs.york.ac.uk

RoboStar Vision

O@0000000

RoboStar Vision

© N o o bk~ w N

RoboStar

Simulation with commercial tools.

. . . properties ‘
Coding in practical languages. ‘mmpoz::t
Tests: simulation, deployment. Hhiman

behaviour

Proof: model checking, theorem proving.

Evidence of properties.

ional
conditions

Safety, security, more.

Significant asset: RoboTool. Q

Application agnostic.

Jim Woodcock

14/38

robostar.cs.york.ac.uk

RoboStar Vision

00@000000

Core Notation: RoboChart
RoboChart

1. Statecharts for behaviour.
Parallel execution of statecharts.
Simple component model.
Synchronous or asynchronous.
Platform independent.
Capabilities: events and operations.

Timed behaviours. .

© N o O B~ w N

Probabilistic choice.

Jim Woodcock

RoboStar 15/38

robostar.cs.york.ac.uk

RoboStar Vision Viodellin

g ANNs
000800000

Deriving Value: RoboChart

Simulation model: cyclic mechanism.

Simulation code: CoppeliaSim, Gazebo, Drake, RT-Tester.
Deployment code.

Automatic test generation.

RoboWorld: operational requirements.

Model checking: FDR and PRISM.

Theorem proving: Isabelle/UTP.

RoboCert: property specification.

© 0 N o R Db

Ongoing work: neural networks, human behaviour, safety cases.

Jim Woodcock

RoboStar 16 /38

robostar.cs.york.ac.uk

RoboStar Vision

[e]e]e]e] Jelele]e]

ons

RoboChart Modelling Stack

eural networks oboWorl umans
RoboChart N | network RoboWorld H
RoboArch operational requirements
variables
operations mapping assumptions
events
) how voltage maps voltage(+) infrared how object colour() Position of
¢ to identification desired light(+) properties affect objects and
move(1)(—) force(—)
of obstacle speed(—) torgue(—) infrared light robot
effect on
d-model outputs of p-model outputs of inputs of s-model
o o] inputs fplatform} sensors (Physican) _sensers
software

outputs mapping inputs of (_model J

fenvironment} sensors

. RoboCert
inputs of |__Mapping effect of
actuators actuators actuators
links joints GPELULLS
J and events Isabelle/SACM
sensors actuators
of interest
effect on
ode outputs of outputs of inputs of
inputs it sensors () sensors e sensors
implementation Ll lementation
outputs El inputs of inputs of El effect of
actuators actuators actuators
Deployment

inputs

outputs

Jim Woodcock

RoboStar

robostar.cs.york.ac.uk

RoboStar

RoboStar
000008000

RoboChart
RoboWorld
model

No

Model
checkers
Automatic Theorem
generation provers

Automatic
generation

Test Robotics

simulator

cases
Conversion

Test System Deployment

cases testing code

Automatic

generation

No
correct?

Environment
restrictions

Jim Woodcock

robostar.cs.york.ac.uk

RoboStar Vision

[e]e]e]ele]e] Jo]e]

Neural Networks in RoboChart

» Trained
» Feed forward
» Fully connected

» RelU or linear
activation

Jim Woodcock

RoboStar

traditional
timewise
refinement

RoboTool

automatic
RoboChart | &eeration CcSsP translation uTP
pr— i :
exiits (semantics |encoding
cyclic
memoryless conf (€)

Qperation

Yes automatic

CsP

translation uTP

RODOCHart) &eneration
ANN_]

automatic
generation

A it |

ssertional ()52 /JCSP
reasoning

with JML code

semantics

C/C++
simul

encoding

Gazebo
CoppeliaSim
etc

Isabelle/UTP
Marabou

robostar.cs.york.ac.uk

RoboStar

Jim Woodcock

RoboStar Vision
0000000e0

(ISR [g

l—

{Antaancirmi]] wrers]_F—— =
; At ol T wnD —
oo e

ezl T W e

gy

o
it

O Aguiditmetse 2ol AT e
[Oswwoneserwaw

0 Rotater I vl I

{ ';mz ol

robostar.cs.york.ac.uk

RoboStar Vision

000000008

RoboChart with ANN: Our Language

State
machines
A
composed of
R:):dc:;:rt ANN metamodel OpenJML
A\ 4 Data-rich
ANN defined by |gebrai ded i
process algebraic | _encoded in \m FDR
components semantics L—J
(Circus)
y
WeII—for_m_edness . Isabelle/UTP
conditions

Marabou
Jim Woodcock

RoboStar 21/38

robostar.cs.york.ac.uk

Modelling ANNs

®0000000

Outline

Modelling ANNs ROBOSTA R

Jim Woodcock

RoboStar

robostar.cs.york.ac.uk

Modelling ANNs

O®000000

RoboChart with ANN: Verification

application-specific
events

RoboChart

- CSP semantics Reactive contract
controller >

attern
iteration UTF laws Q

coNf () [rm— Reachability Isabelle/UTP
conditions

A 2
RoboChart | seduentialisation [Sequential | CSP semantics [Reactive contract strengthening
ANN call CSP process| UTP laws pattern bounding
deterministic function A 4 A 2

trace-based specification (\/erification
- Marabou
conditions

Jim Woodcock

RoboStar

robostar.cs.york.ac.uk

RoboStar Vision Modelling ANNs

[e]e] le]e]e]e]e]

CSP Models of ANNs

» Neurons as Processes Each neuron is represented as a concurrent process.
Processes communicate through channels, representing weights between neurons.

» Communication and Synchronisation Modelled using CSP’s primitives.
This formalises information flow and computation within the neural network.

P Parallel and Distributed Computation Multiple neurons execute simultaneously.

» Formal Verification Theorem proving in Isabelle/UTP, model checking in FDRA4.
Check for convergence, stability, robustness, and specific properties.

» Compositionality Scaling analysis and verification of larger ANNs.

> Active research area to provide formal foundations for ANNs.

Jim Woodcock

RoboStar 24 /38

robostar.cs.york.ac.uk

tar Vision Modelling ANNs

[e]e]e] Je]ele]e]

CSP Dataflow Architecture for ANNs

Model an ANN as a recurrent dataflow network with transforming-buffer nodes.
Implement this model in CSP. Analyse it in Isabelle/UTP and FDR4.
Transformation totality ensures network totality.

Dataflow architecture ensures network deadlock-freedom.

Dataflow architecture ensures network divergence-freedom.

Architecture and transformations ensure network determinism.

Jim Woodcock

RoboStar 25/38

robostar.cs.york.ac.uk

Modelling ANNs

[e]e]e]e] Jele]e]

Simple Example: Generic ANN

Consider an ANN with one input layer, N, hidden layers, and one output layer.
Layers are indexed between 0 .. layerNo, where layerNo = Ny + 2.

Nodes are connected with communication channels.

Layer /, node n has inputs on layerRes.(/ — 1).n and outputs on layerRes.|.n.
Consider one input node, one hidden layer with two nodes, and one output node.
There are four channels: /ayerRes.0.1, layerRes.1.1, layerRes.1.2, layerRes.2.1.
Three processes: Node(1,1), Node(1,2), Node(2,1), two hidden, one output.
There is no material behaviour in the input node.

Process behaviour: Inputs ; Outputs. Network is recurrent, left implicit.
layerRes.1.27x — layerRes.1.17y — layerRes.2.1!ReLU(wt * (x +y) + bs) — SKIP

Vv VvyVvVvVvVvVvyVvVYVvYVYyyYy

Jim Woodcock

RoboStar 26 /38

robostar.cs.york.ac.uk

Modelling ANNs

[e]e]e]e]e] Je]e]

CSP Model of an ANN: 1-1-1 Layers

Node(1,1)
layerRes.0.17x
) — layerRes.1.1!ReLU(x % wt + bs)
— SKIP
layerRes.1.1
((Node(2,1)
layerRes.0.1 layerRes.1.27x layerRes.2.1
— layerRes.1.17y >
— layerRes.2.1!ReLU(wt * (x + y) + bs)
— SKIP
layerRes.1.2
Node(1,2)

Jim Woodcock

RoboStar

layerRes.0.17x

— layerRes.1.2!ReLU(x % wt + bs)

— SKIP

robostar.cs.york.ac.uk

Modelling ANNs
00000080

CSP Model for ANN

» ANN = ((HiddenLayers | {layerRes.(layerNo — 1)} || OutputLayer) \ HiddenEvts Aeng Skip) ; ANN
» HiddenEvts = X\ {|layerRes.0, layerRes.layerNo, end |}
» HiddenLayers =
H i:1..layerNo — 1 e [{layerRes.(i — 1), layerRes.i[}|HiddenLayer(i, layerSize(i), layerSize(i — 1))

» HiddenlLayer(l,s, inpSize) = H i:1..s e [{layerRes.(I —1)[}] Node(l, i, inpSize)
» Node(/, n, inpSize) =

(w i:1..inpSize e Nodeln(l, n,i)) |[{{nodeOut.l.n[} || Collator(l, n, inpSize)) \ {|nodeOut|};
» Nodeln(l,n,i) = layerRes.(I —1).i?x — nodeOut.l.n.i!(x * weight) — Skip
» Collator(l, n, inpSize) = let C(I,n,0,sum) = layerRes.l.n!(ReLU(sum + bias)) — Skip

C(l,n,i,sum) = nodeOut.l.n.i?x — C(I,n, (i — 1), (sum + x))
within C(/, n, inpSize, 0)
» OQutputLayer =
” i:1..layerSize(layerNo) e
[{|//ayerRes.(layerNo — 1)[}] Node(layerNo, i, layerSize(layerNo — 1))
Jim Woodcock

RoboStar 28 /38

robostar.cs.york.ac.uk

RoboStar Vision Modelling ANNs

[e]e]e]e]e]ee]]

Marabou

» SMT-based neural network verification tool from Stanford University and Galois.

v

Gives formal guarantees about properties and outputs.

» Robustness Verify behaviour wrt input perturbations and adversarial attacks.
Determine maximum perturbation for unchanged output wrt specified threshold.

» Qutput Range Analysis Possible output values for given input range.

» Input-Output Check if input patterns always lead to specific output patterns.
Check if certain output classes are never produced for a given set of inputs.

> Safety Properties Ensure output doesn't exceed certain thresholds.

Ensure certain inputs never lead to unsafe outputs.

» Can be used as part of end-to-end verification. RoboStar!

Jim Woodcock

RoboStar 29 /38

robostar.cs.york.ac.uk

Specifying ANNs

[Jelele]e]

Outline

ROBOSTAR

Specifying ANNs

Jim Woodcock
RoboStar

robostar.cs.york.ac.uk

Specifying ANNs

[e] le]e]e}

Reactive Contracts in UTP

> Contract extension for semantics of state-rich CSP processes.

» Provides a rich set of algebraic laws for process verification.

» Observational variables:

st, st’ . Var -+ Val program state

ok,ok’ : Bool initiation and termination

tr, tr' . seq Event event traces

tt’ . seq Event process’s event trace tr' — tr
wait, wait': Bool quiescence

ref,ref’ : PP Event refusal sets

Jim Woodcock

RoboStar 31/38

robostar.cs.york.ac.uk

Specifying ANNs

[e]e] Jele}

Reactive Contracts

» Syntax: [P[st] - Q[tt’, st, ref'] | R[tt/, st,st']].

» Semantics: ok A P[tt,st] = ok’ A (Q[tt’, st, ref’] < wait’ > R[tt', st, st']).

» Precondition P: condition on pre-state st.
» Postcondition R: relation on state st, update st’, event trace tt’.
» Pericondition Q: relation on quiescent but not final observations.

Relation on pre-state st, event trace tt/, refusals ref’.

Jim Woodcock
RoboStar

robostar.cs.york.ac.uk

Specifying ANNs

[e]e]e] o]

Reactive Contracts

v

Simple pattern for contracts: PERI[t, E| and POsT|[¢].

v

CSP processes without state variables.

» Pericondition PERI[t, E|: Event trace t observed. Event set E not refused.

PERI[t,E] = tt' =t Aref NE =10

» Postcondition PosT|[t]: Event trace t has been observed.

Post[t] = tt' = t.

v

Channel set {/c[}: all events communicable on channel c.

Jim Woodcock

RoboStar 33/38

robostar.cs.york.ac.uk

Specifying ANNs

[e]e]e]e]]

Conformance

Q conf(e) P &
s : seq Event; a: P Event |
tt seqapprox(e) s A\ (aP \ ref’) setapprox(e) a e
Pls,(aP\ a) / tt,ref' | C Q

> s: approximation of traces Only outputs are approximated.

» a: approximation of acceptances

Jim Woodcock

RoboStar 34/38

robostar.cs.york.ac.uk

ANNs Spec ANNs Conclusions

@000

Outline

ROBOSTAR

Conclusions

Jim Woodcock

robostar.cs.york.ac.uk

Conclusions

0@00

Contributions

Method for robotic software with reliable, white-box ANN components.
Deductive guarantees on the behaviour of system-level properties.
Platform-independent models for validation, simulation, and verification.
Metamodel: trained, feed-forward, fully connected ANNs. Any size or shape.
General, extensible, formal representation of ReLU ANNSs.

Validation using FDR4 model checker. Simulation using JCSP.

vV Vv vy vV VvV VY

Reactive contract theory enables verification using Isabelle/UTP.

Jim Woodcock

RoboStar 36/38

robostar.cs.york.ac.uk

tar Vision Spe Conclusions

0000

Contributions

ANN property proof method based on refinement.

Numerical instability of ANNs. Provides worst-case error bound.
Substitutability: ANN for RoboChart controller. Guaranteed error bound.
Example case study: inverted pendulum PID controller.

Translate reactive contract to multiple input/output reachability properties.

Integrated approach to reason about ANN, using a variety of techniques

vV Vv vy vV VvV VY

Simulation: Java and standard tools. Proof: Isabelle/UTP + Marabou.

Jim Woodcock

RoboStar 37/38

robostar.cs.york.ac.uk

Conclusions

[e]e]e])

Future Work

More case studies.

Challenge problems.

Timed models.

Probabilistic models. R 0 B 0 S TA R
Simulation models.

Perception.

Jim Woodcock

RoboStar 38/38

robostar.cs.york.ac.uk

	Overview
	Motivation
	RoboStar Vision
	Modelling ANNs
	Specifying ANNs
	Conclusions

