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Abstract

Feature selection via Joint Likelihood
Adam C Pocock

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2012

We study the nature of filter methods for feature selection. In particular, we ex-

amine information theoretic approaches to this problem, looking at the literature

over the past 20 years. We consider this literature from a different perspective, by

viewing feature selection as a process which minimises a loss function. We choose

to use the model likelihood as the loss function, and thus we seek to maximise

the likelihood. The first contribution of this thesis is to show that the problem of

information theoretic filter feature selection can be rephrased as maximising the

likelihood of a discriminative model.

From this novel result we can unify the literature revealing that many of

these selection criteria are approximate maximisers of the joint likelihood. Many

of these heuristic criteria were hand-designed to optimise various definitions of

feature “relevancy” and “redundancy”, but with our probabilistic interpretation

we naturally include these concepts, plus the “conditional redundancy”, which is

a measure of positive interactions between features. This perspective allows us

to derive the different criteria from the joint likelihood by making different inde-

pendence assumptions on the underlying probability distributions. We provide

an empirical study which reinforces our theoretical conclusions, whilst revealing

implementation considerations due to the varying magnitudes of the relevancy

and redundancy terms.

We then investigate the benefits our probabilistic perspective provides for the

application of these feature selection criteria in new areas. The joint likelihood

11



automatically includes a prior distribution over the selected feature sets and so

we investigate how including prior knowledge affects the feature selection process.

We can now incorporate domain knowledge into feature selection, allowing the

imposition of sparsity on the selected feature set without using heuristic stopping

criteria. We investigate the use of priors mainly in the context of Markov Blanket

discovery algorithms, in the process showing that a family of algorithms based

upon IAMB are iterative maximisers of our joint likelihood with respect to a

particular sparsity prior. We thus extend the IAMB family to include a prior for

domain knowledge in addition to the sparsity prior.

Next we investigate what the choice of likelihood function implies about the

resulting filter criterion. We do this by applying our derivation to a cost-weighted

likelihood, showing that this likelihood implies a particular cost-sensitive filter

criterion. This criterion is based on a weighted branch of information theory and

we prove several novel results justifying its use as a feature selection criterion,

namely the positivity of the measure, and the chain rule of mutual information.

We show that the feature set produced by this cost-sensitive filter criterion can be

used to convert a cost-insensitive classifier into a cost-sensitive one by adjusting

the features the classifier sees. This can be seen as an analogous process to

that of adjusting the data via over or undersampling to create a cost-sensitive

classifier, but with the crucial difference that it does not artificially alter the data

distribution.

Finally we conclude with a summary of the benefits this loss function view

of feature selection has provided. This perspective can be used to analyse other

feature selection techniques other than those based upon information theory, and

new groups of selection criteria can be derived by considering novel loss functions.
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Notation

d Dimension of the feature space (i.e. the number of features)

N Number of datapoints

Y Random variable denoting the output

Xi, X Random variable denoting the i’th input/feature, and the joint ran-

dom variable of all the features X1, . . . , Xd

|Y | The number of states in Y

y, yi, ŷ A label y ∈ Y , the i’th datapoint’s label, and a predicted label

x, xi A feature vector x ∈ X, and the i’th datapoint’s feature vector

w, w(y) A |Y | − 1 dimensional non-negative weight vector, a weight function

based upon the label y

D A dataset of N {x,y} tuples

θ, θi A d-dimensional bit vector, and the i’th element of the vector, θi = 1

denotes the i’th feature is selected

¬θ The logical inverse of θ, i.e. the unselected features

Xθ, xθ The selected subset of featuresXθ ⊆ X, and a feature vector xθ ∈ Xθ

λ, τ Generative parameters for creating x, discriminative parameters for

determining y from a particular x

p(y), p̂(y) A true probability distribution, and an estimated distribution

q(y|x, τ) The probability of label y conditioned on x from a predictive model

using parameters τ

L, −� The likelihood function, and the negative log-likelihood

S The selected feature set — equivalent to Xθ

J(Xj) Scoring criterion measuring the quality of the feature Xj

θt The selected feature vector at time t
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Chapter 1

Introduction

If we wish to make a decision about an important subject, the first step is of-

ten to gather data about the problem. For example, if we need to decide which

University to study at for a degree, it would be sensible to gather relevant in-

formation like the courses offered by different Universities, what the surrounding

environment is like, and what the job prospects are for graduates of the insti-

tutions. If we instead chose to base our decision on irrelevant information like

the colour of the cars parked outside each University, then our choice would not

be well informed and the course might be entirely unsuitable. The problem of

choosing what information to base our decisions on must be solved before we can

even attempt the larger problem of making a decision. The task of automatically

making decisions falls under the remit of Artificial Intelligence, and specifically

the field of Machine Learning. Machine Learning is about constructing models

which make predictions based upon data, and in this thesis we focus on that first

step in producing a prediction, namely selecting the relevant data.

In this chapter we motivate the problem of feature selection, giving a brief

introduction to the relevant topics and explaining the importance of the problem.

We state the specific questions that this thesis answers, explaining the relevancy

of those questions to the field. We then provide a brief outline of the thesis

structure, and detail the publications which have resulted from this thesis.

1.1 Prediction and data collection

In this section we will look at the process of making a prediction at a high

level. We consider the problem of predicting what university undergraduate

17



18 CHAPTER 1. INTRODUCTION

course would best suit a particular student. As we outlined above, a crucial

first step is deciding what data we should base our predictions on. In this task

basing our predictions on the colour of houses in southern Peru is unlikely to

give much insight, but basing our predictions on that student’s strengths and the

qualities of the university would allow a much improved prediction. Therefore

choosing the inputs (also known as features) to a learning algorithm is as im-

portant as the choice of learning algorithm, as without good inputs nothing can

be learned. Once we have selected a set of appropriate inputs, it is possible to

analyse those choices and decipher how each input relates to the thing we wish

to predict. Feature selection is the process of finding those inputs and learning

how they relate to each other.

If we consider the task of feature selection, we can separate out features into

three different classes: relevant, redundant and irrelevant (we will give precise

definitions of each of these concepts in Chapter 3). Relevant features are those

which contain information which will help solve the prediction problem. Without

these features it is likely we will have incomplete information about the problem

we are trying to solve, therefore our predictions will be poor. As mentioned

previously, the proportion of graduates who have jobs or gone on to further study

would be a very relevant feature when choosing a degree course. Redundant

features are those which contain useful information that we already know from

another source. If we have two features, one which tells us a university has 256

Computer Science (CS) undergraduates, and the other tells us the same university

has more than 200 CS undergraduates, then the second is clearly redundant as the

first feature tells us exactly how many students there are (assuming both features

give true information). If we didn’t know the first feature, then the second would

give useful information about the popularity of the CS course, but it doesn’t add

any extra information to the first feature. Irrelevant features are those which

contain no useful information about the problem. It is easy to think of irrelevant

features for any given problem, for example the equatorial circumference of the

Moon is unlikely to be relevant to the problem of choosing a degree course. If

we could go through our data, and label each feature relevant, redundant or

irrelevant then the feature selection task would be easy. We would simply select

all the relevant features, and discard the rest. We could then move on to the

complex problem of learning how to predict based upon those features.

Unfortunately, as with many things in machine learning, the high level view
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sounds simple but the details of implementing such a process can be very hard.

In the extreme examples described above it was simple to determine if a feature

was relevant, irrelevant, or redundant in the presence of other features. In real

problems it is usually much more difficult. For example, if one of our features

is the number of bricks in the Computer Science building at the university, will

that feature help us decide if the Computer Science undergraduate course will

be good? Intuitively we might expect this feature to be irrelevant, but this is

not necessarily the case. We might imagine that a large number means there

is a large CS building, (hopefully) full of fascinating lectures and the latest in

computer hardware. Equally the number could be very small, if the building is

modern and built from glass and steel, and yet still contain the truly relevant

(but hard to quantify) things which will make a good undergraduate course. The

number could also be somewhere in the middle, indicating a smaller building

with fewer students. This feature could interact with other features we have

collected, changing the meaning of that feature. Our prospective undergraduate

could prefer going to a large department with many students, where there is more

potential for socialising and working with different people. Or they could prefer

a small department which is less busy and where it is possible to know all the

students and staff. These two features (the number of bricks, and our prospective

student’s preference) interact, so a student who wants a large department might

prefer a course with a large number of bricks (or a very small number) denoting

a large CS building. The student who favours a small department might prefer a

course with a medium number of bricks, denoting a smaller CS building. However

without considering both of these features together our feature selection process

might believe the number of bricks to be irrelevant, as small, medium and large

values all lead to good and bad choices of undergraduate course, because the

choice also depends on the student’s preference.

Determining if a feature is redundant is an equally hard problem. In our

example if we knew both the number of bricks and the amount of floor space in

the CS building we might think the former is redundant in the presence of the

latter. In the previous example we simply used the number of bricks as a proxy

for the size of the building, so knowing the size of the building surely makes that

feature redundant? As always the answer is not quite so simple, as very small

numbers of bricks also told us that the building might be modern and made

from steel. Our new feature of the size of the building does not provide that
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information, and so does not make the number of bricks completely redundant.

If analysing features to determine these properties is so difficult for humans,

how can we construct algorithms to perform the task automatically? The stan-

dard approach is to use supervised learning where we take a dataset of features,

label them with the appropriate class, and then try to learn the relationship be-

tween the features and the class. In our example we would measure all of the

features for each different university course, gather a sample of prospective under-

graduates, survey their preferences for courses and finally record their choice of

course and whether they were happy with that choice. For each student we would

have a list of features pertaining to their chosen university course, their individ-

ual preferences, and a label which stated if they were happy with the course. We

then test each feature to see how relevant it is to the happiness of the student.

The choice of the relevancy test (or selection criterion) is one of the principle

areas of research in feature selection, and forms the topic of this thesis.

One further question we might ask is why analyse the features at all. Surely

if we find a sufficiently sophisticated machine learning algorithm to make our

prediction about the choice of course then we do not need to separately anal-

yse the features. While many modern machine learning methods are capable of

learning in the presence of irrelevant features, this comes at the expense of extra

run time and requires additional computer power. In addition to these strictly

computational benefits, there are also reductions in cost by not collecting the

irrelevant features. If collecting each feature has a material or time cost (such as

interviewing lecturers at a university, or surveying the surrounding towns), then

if we do not need those features we can avoid that collection cost. We can see

that even if we assume our learning algorithm can cope with irrelevant features

there are benefits to removing them through feature selection.

1.2 Research Questions

The literature surrounding feature selection contains many different kinds of se-

lection criteria [50]. Most of these criteria have been constructed on an ad-hoc

basis, attempting to find a trade off between the relevancy and redundancy of

the selected feature set. The heuristic nature of selection criteria is particularly

apparent in the field of information theoretic feature selection, upon which this
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thesis focuses. There has been little work which aims to derive the optimal fea-

ture selection criterion based upon a particular evaluation measure that we wish

to minimise/maximise (e.g. we might wish to minimise the number of mistakes

our prediction algorithm makes when given a particular feature set). Therefore

the first question is “Can we derive a feature selection criteria which minimises

the error rate (or a suitable proxy for the error rate)?”. Having achieved this

we wish to understand the confusing literature of information theoretic feature

selection criteria, by relating them to our optimal criterion. The next question is

therefore “What implicit assumptions are made by the literature on information

theoretic criteria, and how do they relate to the optimal criterion?”. Once we

have understood the literature we should look at what other benefits a princi-

pled framework for feature selection might provide, and how we could extend the

framework to other interesting areas, such as cost-sensitivity. We therefore ask

one final question, “How should we construct a cost-sensitive feature selection

algorithm?”.

1.3 Contributions of this thesis

This thesis focuses on filter feature selection criteria, specifically those which use

information theoretic functions to score features. The main contribution is an

interpretation of this field as approximate iterative maximisers of a discriminative

model likelihood. We provide a summary of the contributions here, with a more

thorough description given in the Conclusions chapter (Chapter 8).

• A derivation of the optimal information theoretic feature selection criterion

which iteratively maximises a discriminative model likelihood (Chapter 4).

• Theoretical analysis of a selection of information theoretic criteria showing

how they are approximations to the optimal criterion derived in Chapter

4. This leads to an analysis of the assumptions inherent in these criteria

(Chapter 5).

• Empirical study of the same criteria, showing how they behave in terms of

stability and accuracy across a range of datasets (15 UCI, 5 gene expression,

and 2 from the NIPS-FS Challenge). This study shows how the different

criteria respond to differing amounts of data, and how the theoretical points

influence empirical performance (Chapter 5).
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• An investigation into the use of priors with information theoretic criteria,

in particular showing a Markov Blanket discovery algorithm to be a special

case of the iterative maximisers from Chapter 4, using a specific sparsity

prior. We then extend this algorithm to include domain knowledge (Chapter

6).

• A derivation of cost-sensitive feature selection, from a weighted form of

the conditional likelihood which bounds the empirical risk. Development

of approximate criteria which maximise this likelihood, and produce cost-

sensitive feature sets (Chapter 7).

• Proofs for two important properties of the Weighted Mutual Information,

namely non-negativity and a version of the chain rule (Chapter 7).

• An empirical study of cost-sensitive feature selection, showing how it can

be combined with a cost-insensitive classification algorithm to produce an

overall cost-sensitive system (Chapter 7).

1.4 Structure of this thesis

In Chapter 2 we present the background material in Machine Learning, classifica-

tion and Information Theory which is necessary to understand the contributions

of the thesis. We cover the different evaluation metrics we use to measure the

performance of our feature selection algorithms, and the simple classifiers we use

to produce predictions based upon the feature sets. We look at the problem

of cost-sensitive classification, where some kinds of errors are more costly than

others, and review the common approaches used for solving those problems. Fi-

nally we review Information Theory as a way of measuring the links between two

random variables.

In Chapter 3 we present the literature surrounding feature selection itself,

which provides the landscape for the contributions of this thesis. We look at the

state-of-the-art in information theoretic feature selection, and how researchers

have attempted to link together the complex literature. We review feature selec-

tion algorithms which incorporate domain knowledge, and those which can cope

with cost-sensitive problems. Finally we look at the related area of Bayesian

Networks and specifically structure learning, which has many links to the topic

of feature selection particularly when using Information Theory.
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In Chapter 4 we present the central result of this thesis, namely a derivation

of information theoretic feature selection as the optimisation of a discriminative

model likelihood. We then derive the appropriate update rules which select fea-

tures to maximise this likelihood.

In Chapter 5 we use the derivation from the previous chapter to unify the

literature in information theoretic feature selection, showing that many of the

common criteria are in fact approximate maximisers of the discriminative model

likelihood. We state the implicit assumptions made by these criteria, and in-

vestigate the impact of these assumptions on the empirical performance of the

selection criteria across a wide range of problems.

In Chapter 6 we look at the benefits our probabilistic framework gives, focus-

ing on how to use it to incorporate domain knowledge into the feature selection

process. We find that a well-known structure learning algorithm can be inter-

preted as yet another maximiser of our discriminative model likelihood, under a

specific sparsity prior. We extend that algorithm to incorporate other kinds of

domain knowledge, showing how it improves the performance even when half the

“knowledge” is incorrect.

In Chapter 7 we look at what happens to the feature selection criteria if we

change the underlying likelihood. Specifically we investigate a cost-sensitive like-

lihood, and derive cost-sensitive feature selection criteria based upon a weighted

variant of information theory. We prove several results related to the weighted

information measure to ensure its suitability as a feature selection criteria, before

benchmarking the new cost-sensitive criteria on a variety of problems.

In Chapter 8 we conclude the thesis, reviewing the material presented and

looking at how this has contributed to the field of feature selection. We suggest

several interesting future directions for feature selection which have arisen during

the course of this research.

1.5 Publications and Software

The work presented in this thesis has resulted in several publications with one

further paper currently in preparation:

[14] — G. Brown, A. Pocock, M.-J. Zhao and M. Luján. Conditional Likeli-

hood Maximisation: A Unifying Framework for Information Theoretic Feature

Selection. Journal of Machine Learning Research (JMLR), 2012.
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[88] — A. Pocock, M. Luján and G. Brown. Informative Priors for Markov

Blanket Discovery. 15th International Conference on AI and Statistics (AISTATS

2012).

[87] — A. Pocock, N. Edakunni, M.-J. Zhao, M. Luján and G. Brown. Infor-

mation Theoretic Feature Selection for Cost-Sensitive Problems. In preparation,

2012.

Chapters 4 and 6 are expanded versions of the material presented in the

AISTATS paper [88]. Chapter 5 is an updated version of the material presented

in the JMLR paper [14]. The JMLR paper also presents an earlier version of the

derivation given in Chapter 4. Chapter 7 is an expanded version of the material

of the paper in preparation [87].

Other published work

In collaboration with other members of the iTLS project, several other papers

were published which contain work which is not relevant to this thesis.

[89] — A. Pocock, P. Yiapanis, J. Singer, M. Luján and G. Brown. Online Non-

Stationary Boosting. In J. Kittler, N. El-Gayar, F. Roli, editors, 9th International

Workshop on Multiple Classifier Systems, (MCS 2010).

[57] — N. Ioannou, J. Singer, S. Khan, P. Xekalakis, P. Yiapanis, A. Pocock,

G. Brown, M. Luján, I. Watson, and M. Cintra. Toward a more accurate under-

standing of the limits of the TLS execution paradigm. 2010 IEEE Symposium

on Workload Characterisation, (IISWC 2010).

[98] — J. Singer, P. Yiapanis, A. Pocock, M. Luján, G. Brown, N. Ioannou,

and M. Cintra. Static Java program features for intelligent squash prediction.

Statistical and Machine learning approaches to ARchitecture and compilaTion

(SMART10).

Software

To support the experimental studies in this thesis several libraries were developed:

• MIToolbox: A mutual information library for C or MATLAB, provides

common information theoretic functions such as Entropy, Mutual Informa-

tion. Also includes an implementation of Rényi’s entropy and divergence.

Available at MLOSS (http://mloss.org/software/view/325/).
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• JavaMI: A reimplementation of MIToolbox in Java. Available here (http:

//www.cs.man.ac.uk/~pococka4/JavaMI.html).

• FEAST: A feature selection toolbox for C or MATLAB, provides imple-

mentations of all the algorithms considered in Chapter 5. Available at

MLOSS (http://mloss.org/software/view/386/).

• Weighted MIToolbox/Weighted FEAST: A weighted information the-

ory library for C or MATLAB. Available once the corresponding paper is

published or upon request (forms an update to MIToolbox).



Chapter 2

Background

In the previous chapter we briefly investigated the notions of feature selection and

prediction. We now provide a fuller treatment of those areas, and providing the

background material necessary to understand the ideas presented in this thesis.

We also introduce much of the common notation used throughout the thesis.

As this material is common to many branches of machine learning it forms the

basis of many textbooks, the particular references used for this chapter (unless

otherwise stated) are Bishop [10], Duda et al. [35] and over & Thomas [24].

We begin by revisiting the classification problem in Section 2.1, giving a for-

mal definition of the problem before detailing some of the common methods for

evaluating classification problems. We also explore the notions of likelihood and

probabilistic modelling, which are central to the results in the later chapters.

We review the literature around cost-sensitive classification algorithms in Section

2.2. Finally we introduce Information Theory in Section 2.3, and explore the

two variants we use in this thesis, Shannon’s original formulation of Entropy and

Information [97], and Guiaşu’s formulation of the Weighted Entropy [46]. We

then review the links between information theory and the classification problem

in the current literature.

2.1 Classification

The most common task in machine learning is predicting an unknown property

of an object. We base the predictions on a set of inputs or features, and the

predictions themselves come in two main kinds. Classification is the process

of predicting an integer or categorical label from the features. Regression is

26
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the process of predicting a real-numbered value from the features. Whilst these

processes are similar, as regression can be seen as classification in an ordered

space, the two processes are usually treated separately. For the remainder of this

thesis we will focus on classification problems.

We can formally express a classification problem as an unknown mapping

φ : X → Y from a d-dimensional vector of the real numbers, X ∈ R
d, to a member

of the set of class labels, Y ∈ {y1, y2, · · · }. The problem for any given classification

algorithm is to learn the general form of this mapping. In supervised learning

tasks we learn this mapping from a set of data examples which have been labelled

beforehand. This is a difficult task as labelled data is more expensive to acquire

than unlabelled data, as it requires more processing (and usually some human

oversight). Each data example forms a tuple {x, y} of a feature vector x and

the associated class label y. In general we will assume our data is independently

and identically distributed (i.i.d. ) which means that each training example tuple

is drawn independently from the same underlying distribution. We can think

of this mapping as producing a decision boundary which separates the feature

space into subspaces based upon what class label is mapped to a subspace. A

classification model is the estimated mapping function f , which takes in x and

some parameters τ and returns a predicted class label ŷ,

ŷ = f(x, τ). (2.1)

The task is then to find the model parameters τ which give the best predictions

ŷ. We will look at how to measure the quality of the predictions in more detail

later.

In general we wish to minimise the number of parameters which are fitted by

the classification algorithm. This is an application of Occam’s Razor, we wish

to find the simplest rule which explains all the data, as we expect this will lead

to the best performance on unseen data. As the number of parameters increases

there are more different ways to fit the available training data, and any given

classification rule (which is a function of the parameters) becomes more complex.

In Figure 2.1 we can see two example classification boundaries which separate the

circles and stars. The solid line is a linear boundary, and thus has few parameters

(as any straight line in d dimensions has d + 1 parameters). This line does not

perfectly separate the two classes, it incorrectly classifies 6 training examples.

The dashed line is a non-linear boundary, and thus has comparatively many
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Figure 2.1: Two example classification boundaries. The solid line is from a linear
classifier, and the dashed line is from a non-linear classifier.

parameters to control the different line segments. This line perfectly separates

the two classes on the training data, but we would expect it to perform poorly

on testing data as it has overfit to the training data. Each class in the figure

is drawn from a 2-dimensional Gaussian distribution with unit variance, if we

drew some testing data from those Gaussians the non-linear boundary would

perform very poorly compared to the linear one. This phenomenon of overfitting

is something which feature selection can help reduce, as it reduces the dimension

of the problem which in turn reduces the potential for overfitting.

We can measure the performance of classification algorithms in multiple dif-

ferent ways, with the most common being the error rate, i.e. the number of mis-

classified examples divided by the total number of examples tested. Using ŷi to

denote the predicted label for the ith example and yi to denote the corresponding

true label we express the error rate for a dataset D and model f as,

err(D, f) =
1

N

N∑
i=1

1− δyi,ŷi (2.2)

where δyi,ŷi is the Kronecker delta function, which returns one if the arguments

are identical (i.e. if yi = ŷi), and zero otherwise (i.e. yi �= ŷi). The Bayes Error
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True Label
+ -

Prediction
+ TP FP
- FN TN

Table 2.1: Summarising different kinds of misclassification.

(or Bayes Rate) of a dataset or problem is the error achieved by the optimal

classifier and represents the theoretical minimum error for that dataset. It is

usually described as a function of the noise in the data, and thus noisy datasets

where the unknown mapping φ contains an additional random element in general

have higher Bayes error. Alternatively the features x may not have sufficient

discriminative power to determine the class label, which also results in a high

Bayes error. The Bayes error of a problem is difficult to determine but there

exists a bound on it in terms of estimable values (see Section 2.3.2).

The error rate masks several important properties of the classification perfor-

mance that we may wish to examine separately. To explain this we introduce

the notions of true positives, true negatives, false positives and false negatives.

The definitions below strictly apply in two class problems, but in Chapter 7 we

will use multi-class versions by defining one class to be the positive class, and

the remaining classes defined as the negative classes. In two class problems we

usually refer to one class as the positive class, and the other as the negative class,

with the positive class denoting the one we are interested in (e.g. in a medical

situation the positive class is presence of disease, and the negative class is the

absence of disease).

Definition 1. Types of classification.

True Positive: A true positive (TP) is a correctly predicted positive example.

True Negative: A true negative (TN) is a correctly predicted negative example.

False Positive: A false positive (FP) is an incorrect prediction that an example

was positive, when it in fact was negative. Also known as a Type I error.

False Negative: A false negative (FN) is an incorrect prediction that an example

was negative, when it in fact was positive. Also known as a Type II error.

The different kinds of classifications are neatly summarised in Table 2.1. From

these definitions we can define several new functions which we will use to measure

different aspects of classification performance. Many of these functions treat the

positive class differently to the negative class (or classes in the case of multi-class
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problems), so throughout the thesis we will take care to define the positive class

when using these measures. These functions come in pairs, and we first detail

the precision and recall.

Definition 2. Precision and Recall.

Precision: the fraction of predicted positives which are actually positive.

Precision =
TP

TP + FP
(2.3)

Recall: the fraction of actual positives which are correctly predicted positive.

Recall =
TP

TP + FN
(2.4)

The precision and recall can be used in multi-class problems to measure the

predictive performance of the classifier for a particular class, as they do not require

the calculation of the number of true negatives, which is not well defined for multi-

class problems. Another common pair of error functions are the sensitivity and

specificity.

Definition 3. Sensitivity and Specificity.

Sensitivity: the fraction of actual positives which are correctly predicted positive.

Also known as the true positive rate.

Sensitivity =
TP

TP + FN
(2.5)

Specificity: the fraction of actual negatives which are correctly predicted nega-

tive. Also known as the true negative rate.

Specificity =
TN

TN + FP
(2.6)

We note that the sensitivity and recall are different names for the same func-

tion, but in this thesis we will use the appropriate name depending on the other

measure in use. There are two further functions that we will use to evaluate clas-

sification performance, the balanced error rate and the F-Measure (or F-score).

Definition 4. Balanced Error Rate and F-Measure.

Balanced Error Rate (BER): the mean of the sensitivity and specificity.

BER =
Sensitivity+ Specificity

2
(2.7)
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F-Measure: The F-Measure (technically the F1-Measure1) is the harmonic mean

of the precision and the recall. Written in terms of true positives, false positives

and false negatives it is,

F-Measure =
2× TP

2× TP + FN + FP
(2.8)

The balanced error rate is useful to determine the classification performance when

the data has a class-imbalance, e.g. there are many more negative examples than

positive examples. The F-Measure is useful to summarise the predictive perfor-

mance of a particular class, as it takes into account the true positives, the false

positives, and the false negatives.

2.1.1 Probability, Likelihood and Bayes Theorem

If we base our decisions on the output of a classifier we would like to know how

confident the classifier is that the prediction is correct. We denote the confidence

in the occurrence of an event x by its probability 0 ≤ p(x) ≤ 1, with 1 denoting we

are certain this event will occur and 0 denoting we are certain this event will not

occur. We can construct a distribution of probabilities for a variable X (denoted

p(X)) by incorporating all the possible states or events x ∈ X and normalising

them so the sum of the probabilities is 1. If we have a classifier which predicts

a particular y ∈ {y1, y2} with p(y) = 0.51, then it has a low confidence in that

prediction, yet it is still the most likely prediction. If our classifier predicts y with

p(y) = 0.9 then it is more certain that y is the correct class label. Of course our

classifier makes predictions based upon the input we give it, so our probability

should be conditioned on the data, i.e. we should calculate p(y|x) where x is our

test datapoint. This denotes the conditional probability, the probability of the

outcome y when the value x is known. Again a distribution over the conditional

probabilities can be formed, p(Y |x), denoting the probabilities of each of the

class labels based upon our test datapoint. This can be normalised over all the

possible distributions for the different values of x, resulting in p(Y |X) which is

the conditional probability distribution over all the possible states of Y , for all

possible states of X. These distributions do not take into account the likelihood

of a particular value of X, which is important to the expected performance of

1The F-Measure is usually parameterised as the Fβ measure, where β controls the relative
weighting of the precision and recall.
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any given classifier. If our classifier performs well on the majority of data, but

poorly on rare examples (i.e. ones with a small p(x)) then it will perform well in

expectation. Similarly, good performance across most of the states of X does not

guarantee good performance in expectation if the classifier is poor at predicting

in the most common states. To incorporate this information we need a joint

probability p(y,x), which is the probability of both events y and x happening

together. The joint probability distribution over Y and X can be constructed

from p(Y |X) by multiplying by p(X), so

p(X, Y ) = p(Y |X)p(X). (2.9)

We can now construct one of the most important formulae in Machine Learn-

ing, Bayes’ Theorem (or Bayes’ Rule), which we can use to convert probabilities

we can estimate from the data into the probability of a particular class label given

that data. Bayes’ Theorem follows from the commutativity of probability (i.e.

p(x, y) = p(y, x)) and the definition of joint probability given in Equation (2.9),

resulting in,

p(Y |X) =
p(X|Y )p(Y )

p(X)
. (2.10)

We can estimate the probability of the data, p(X), and the probability of the

class label, p(Y ), from our training dataset. We can also estimate p(X|Y ) by

partitioning the dataset by class label and separately estimating p(X|Y = y) for

each y. Then we can use Bayes’ Theorem to produce the probability of each of

the possible labels for a particular datapoint x. In the context of Bayes’ Theorem

we call p(Y ) the prior, which reflects our belief in the probability of Y a priori

(i.e. before seeing any data), and we call p(Y |X) the posterior, which reflects our

updated belief in the probability of Y once we have seen the data X. If we use

Bayes’ Theorem and return the most likely class label as our prediction, we have

chosen the mode of the distribution p(Y |X) which is the maximum a posteriori

(MAP) solution. This is an alternative to the Maximum Likelihood solution,

which is simply the largest p(X|Y ), otherwise known as the model likelihood.

We return to the concept of the MAP solution in Chapter 4 where we explore the

MAP solution to the feature selection problem.

In general we do not have access to the true probability distribution p, and

so this needs to be estimated from our training data. There are many different

approaches to this estimation process but in this thesis we will focus on discrete
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probability distributions rather than probability densities, and thus we use sim-

ple histogram estimators. These count the number of occurrences of a state in a

dataset, and return the normalised count as a probability. This approach returns

the correct distribution in the limit of infinite data, and is a reasonable approxi-

mation with finite data. As the distribution becomes higher dimensional (e.g. as

we model more and more features) our estimate of the distribution takes longer to

converge to the true distribution. This problem is commonly known as the “curse

of dimensionality” [35], and is the reason many machine learning algorithms seek

low dimensional approximations to the true joint distribution p(x, y). Other ap-

proaches commonly used involve assuming each distribution follows a particular

functional form, such as a Gaussian, and then estimating the parameters which

control that distribution by fitting it to the data (e.g. the mean and the variance

for the Gaussian distribution). This approach is more popular when taking the

fully Bayesian approach to modelling a system [10], where everything is expressed

in terms of a probability distribution or density, and there are no hard values re-

turned. We will look at the Bayesian approach to modelling systems more in

Chapter 3 when we look at Bayesian Networks.

When dealing with classification algorithms we often have parameters we can

tune to alter the behaviour of the algorithm. These are referred to as “hyper-

parameters” of the model, in contrast to the model parameters which are fit

by the training process. We would like to express the probability of our model

parameters given the data, and to optimise those parameters to maximise the

probability, which in turn minimises our error rate. When used in this way we re-

fer to the likelihood, L, of the data given the parameters, where parameters with

higher likelihood fit the data better. We then construct our prior distribution

over the parameters and use Bayes’ Theorem to calculate the probability of our

parameters given the data.

The likelihood of a model is a central concept in this thesis, as it represents

how well a model fits a given dataset. The likelihood of a set of model parameters

is

L(τ) =
N∏
i=1

q(yi,xi|τ). (2.11)

Here q is our predictive model which returns a probability for a given {yi,xi} pair,
based upon the parameters τ . The likelihood takes the form of a product of these

probabilities over the datapoints due to the i.i.d. assumption made about the
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dataset. It is often useful to incorporate a measure of how likely the parameters

τ are a priori, to incorporate domain knowledge about the parameter settings, or

to explicitly include Occam’s razor by preferring smaller numbers of parameters.

We call a likelihood which includes this prior distribution over τ , p(τ), the joint

likelihood of a model,

L(y,x, τ) = p(τ)
N∏
i=1

q(yi,xi|τ). (2.12)

Maximising this value means we find the parameters τ that both model the data,

and are a priori most likely. We use a variant of this joint likelihood in Chapter

4 to investigate feature selection.

In classification problems we care about maximising the discriminative per-

formance, i.e. how well our model predicts yi from a given xi. This is represented

by the conditional likelihood of the labels with respect to the parameters,

L(τ |D) =
N∏
i=1

q(yi|xi, τ). (2.13)

We look at cost-weighted versions of this likelihood in Chapter 7.

2.1.2 Classification algorithms

In this thesis we focus on the selection of the inputs into a classification algorithm,

rather than the construction of new classification algorithms. We thus briefly

discuss the classifiers we use to benchmark our feature selection algorithms.

The k-Nearest Neighbour (k-NN) algorithm [23] is conceptually the simplest

of all classification algorithms. It searches for the k nearest neighbours of the

test datapoint in the training data, and then returns the most popular label

amongst those neighbours. If there is a tie for the most popular class then it

chooses between them at random. The notion of “nearest” is determined by

the choice of distance metric, though the most commonly used is the Euclidean

distance. Whilst it is a simple classifier to describe, it draws complex non-linear

decision boundaries, and requires the storage of all of the training data in the

classifier. In this sense it is a very complex classifier as each training datapoint

is an extra d parameters in the model (one for each dimension or feature). This

means it does not provide a compact representation of the training data, which
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could be analysed to deduce properties of the problem space. However it makes

very few assumptions about the distribution of the data, beyond the presence of

“smoothness” in the label space (i.e. examples which are close together have the

same labels).

A common probabilistic technique is the Näıve Bayes classifier [35]. The

classifier is based on an approximation of Bayes Rule, given in Equation (2.10),

which makes it tractable with small amounts of data. Bayes Rule gives the

optimal classification boundary, but calculating the terms involved is intractable

due to the amount of data required to estimate each term. When generating

classifications (instead of finding the probability of each class) the denominator

is unnecessary, all that is required is to find the y s.t. p(X|Y = y)p(Y = y) is

maximal. Unfortunately even the p(X|Y = y) term is difficult to estimate when

there are tens of features, or each feature is multinomial/real valued. This is

where the näıve assumption is required, which states that p(X|Y = y) can be

approximated by assuming all the features Xj are jointly independent given the

label Y , i.e. all the features are class conditionally independent of each other.

The classification rule can then be rewritten as follows

argmax
y∈Y

{p(Y = y)
d∏

i=1

p(Xi|Y = y)}. (2.14)

The conditional independence factorises the joint distribution into the product

of marginal distributions for each feature. As we shall see when we consider fea-

ture selection, the assumption of class-conditional independence is not generally

a valid one, and thus the Näıve Bayes classifier is suboptimal in many cases.

However it provides surprisingly good classification performance even when the

näıve assumption is provably untrue [33]. In addition, it is fast to train on a given

dataset, and is equally fast at classifying a test dataset. In the next chapter we

will look at Bayesian Networks, and see how the Näıve Bayes classifier can be

interpreted as a simple Bayesian Network.

Support Vector Machines (SVMs) [22] are an optimal way of drawing a linear

classification boundary which maximises the margin (the distance between the

classification boundary and the closest datapoints of each class). The problem

of finding the maximum margin boundary is solved by identifying the support

vectors which control the position of the boundary (usually the examples on the

convex hull of each class). SVMs have become ubiquitous in Machine Learning,
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as the problem formulation has a convex solution (so there is a unique minima)

which can be found using quadratic programming solvers so the optimal solution

is always returned. While the SVM only finds linear boundaries and thus has in-

sufficient complexity to model non-linear functions, it is possible to transform the

feature space into a higher dimension which might permit a linear solution. This

is called the kernel trick as the mapping is done through a kernel function, and

it is a powerful property of the SVM algorithm. When the (high-dimensional)

linear boundary is mapped back into the original (low-dimensional) space it pro-

duces a non-linear boundary, though one which is still optimal in terms of the

margin. The SVM is a two-class classifier, in contrast to the k-NN and Naive

Bayes methods described above which can deal with multi-class problems, though

there are extensions to the SVM which give multi-class classifiers.

These are the three classifiers we will use throughout the remainder of the

thesis, though of course there exist many other classifiers tailored to different

problems. One important class of algorithms are ensemble techniques which com-

bine multiple classification models into one classification system [66]. We refer

the reader to Kuncheva [66] for more detail on ensemble algorithms, but note

that these algorithms are popular when dealing with complex cost-sensitive clas-

sification problems and we now review the literature surrounding cost-sensitive

problems.

2.2 Cost-Sensitive Classification

In many classification problems one kind of error can be more costly than other

kinds, e.g. false negatives are usually much more costly than false positives in

medical situations, as the cost of not treating the disease is generally higher than

the cost of unnecessary treatment. If we have asymmetric costs (where one class

is more important than another) we would like to train a classifier which could

focus on correctly classifying examples of that class. A closely related problem is

classifying in unbalanced datasets, where there are vastly more examples of one

class than another. In these datasets it is simple to achieve a low error rate by

continually predicting the majority class, though the classifier has learned little

about the structure of the problem beyond the asymmetry in the class priors.
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2.2.1 Bayesian Decision Theory

We can formalise the problem of cost-sensitive classification by constructing it as

a decision theory problem, using Bayesian Decision Theory [35]. This provides a

formal language for making optimal predictions given that some errors are more

costly than others. The standard approach for specifying these costs is through

a cost matrix. In decision theoretic terminology, the expected loss of a prediction

procedure p(y|x) is the conditional risk:

R(ŷ|x) =
∑
y∈Y

c(ŷ, y)p(y|x). (2.15)

Here c(ŷ, y) is the entry in the cost matrix associated with predicting class ŷ

given that the true class is y. The Bayes risk, is achieved by predicting the class

label which minimises the conditional risk R(ŷ|x). This is the optimal prediction

in terms of reducing the misprediction costs. Elkan [38] shows that in two-class

problems the cost matrix is over-specified as there are only 2 degrees of freedom,

each of which controls the cost for mispredicting one label. While the cost matrix

approach is simple to understand it has some restrictions, as it does not allow

the costs to be example dependent. Elkan proposed a more general framework

[38, 114] which gives each example a weight based upon how important it is to

classify correctly. This allows the weight to be a function of both y and x, allowing

it to vary with the value of the features as well as the label. This approach can

be extended to the multi-class case by giving each example a vector of |Y | − 1

weights, where |Y | is the number of classes.

2.2.2 Constructing a cost-sensitive classifier

There are many examples of cost-sensitive classifiers, where the cost matrix or

some function thereof is incorporated into the final decision rule. A very simple

strategy to minimise risk is to tune a threshold on class probability predictions,

encouraging more predictions of a particular (costly) class, though this does tend

to introduce false positives. Dmochowski et al. [31] showed that adjusting the

threshold is an optimal solution to the problem if and only if the classification

model is sufficiently expressive to fit the true underlying process which generated

the data.

A more popular strategy is perturbing the data so that a cost-insensitive
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classifier trained on the new data behaves like a cost-sensitive classifier trained

on the original data. Examples of this are the widely used SMOTE technique

[19], and the Costing ensemble algorithm [114]. These approaches resample the

data according to the cost of each example, before training a standard (cost-

insensitive) classifier on the newly resampled data. However, this strategy has the

consequence of distorting the natural data distribution p(x, y), and so the supplied

training data will not be i.i.d. with respect to the testing data, potentially causing

problems with overfitting. The MetaCost algorithm [32] relabels the data based

upon an ensemble prediction and the risk, before training a standard classifier on

the relabelled data. We can view these approaches as distorting how the classifier

“sees” the world – encouraging it to focus on particular types of problems in the

data. The popular LibSVM [17] implementation of the SVM classifier uses an

analogous system where the internal cost function of the classifier is changed so

some examples are more costly to classify incorrectly.

Dmochowski et al. [31] investigate using a weighted likelihood function to

integrate misclassification costs into the (binary) classification process. Each

example is assigned a weight based upon the tuple {x,y}, and the likelihood of

that example is raised to the power of the assigned weight. They prove that

the negative weighted log likelihood forms a tight, convex upper bound on the

empirical loss, which is the expected conditional risk across a dataset. This

property is used to argue that maximising the weighted likelihood is the preferred

approach in the case where the classifier cannot perfectly fit the true model. We

will look at this weighted likelihood in more detail in Chapter 7.

2.3 Information Theory

If we wish to investigate the relationship between two variables, we first need to

decide upon an appropriate measure of similarity or correlation. We would like

this measure to be a function of the interaction between the variables, rather than

a function of their values, and we would also like it measure as many different

kinds of interaction as possible, rather than measuring a single kind of interaction,

such as the linear correlation measured by Pearson’s Product-Moment Correla-

tion Coefficient [85]. We could think of this measure as the amount of shared

information between two variables, as variables which are identical share exactly

the same information. However to develop this idea we first need to quantify
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information. The area of mathematics which deals with measuring information

is innovatively named Information Theory.

In Information Theory, the essential quantity of information is taken to be the

reduction in uncertainty in one variable when another is known. Thus before we

can define information we need to define the uncertainty in a random variable,

and the uncertainty in that variable when another is known. We can then define

the reduction in uncertainty and thus the information content.

2.3.1 Shannon’s Information Theory

Claude Shannon developed the first comprehensive set of answers to these ques-

tions in 1948, in his landmark paper “A Mathematical Theory of Communication”

[97]. He defines three crucial measures which form the basis of much of the rest

of the work we present in this thesis. They are the Entropy, H(X), for a ran-

dom variable X, the Conditional Entropy of X given another random variable

Y , H(X|Y ), and the Mutual Information between two variables, I(X;Y ). All

three are non-negative quantities. A detailed treatment of these three concepts

is given in Cover and Thomas [24]. In this thesis we will work with discrete ran-

dom variables, and so we give definitions for the discrete entropies and mutual

informations. When working with continuous random variables the summations

over possible states are replaced with integrations over the support of the random

variable.

The Entropy of a random variableX, measures the uncertainty about the state

of a sample x from X. The entropy of X is defined in terms of the probability

distribution p(x) over the states of X as follows,

H(X) = −
∑
x∈X

p(x) log p(x). (2.16)

The logarithm base defines the units of entropy, with log2 using bits, and loge

using nats. In general the choice of base does not matter provided it is consistent

throughout all calculations. In this thesis we will calculate entropy using log2

unless otherwise stated. High values of entropy mean the state of x is very uncer-

tain (and thus highly random), and low values mean the state of x is more certain

(and thus less random). Entropy also increases with the number of possible states

of X, as if X has 4 states there are more possibilities for the state of x than if

X had 2 states. Entropy is maximised when all states of X are equally likely,
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as then the state of x is most uncertain/hardest to predict, and H(X) = log |X|
where |X| denotes the number of states of X.

The Conditional Entropy of X conditioned on Y measures the expected un-

certainty of the state of a sample of x when Y is known. It is averaged over

the possible states of Y so it gives a useful measure in the abstract when Y is

unknown. This has two equivalent definitions, in terms of the joint probability

distribution p(x, y),

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y) (2.17)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y). (2.18)

The conditional entropy can also be defined as the entropy of the joint variable

XY minus the entropy of Y ,

H(X|Y ) = H(XY )−H(Y ). (2.19)

The conditional entropy is upper bounded by the marginal entropy, and lower

bounded by 0.

0 ≤ H(X|Y ) ≤ H(X) (2.20)

This lower bound is attained when knowledge of Y enables perfect prediction of

the state of X, and the upper bound is reached when X and Y are independent.

By itself the conditional entropy tells us little about the interaction between

two variables, we need to know the entropy of X before we can derive any useful

information. The difference between the entropy and the conditional entropy for

a pair of variables is called the Mutual Information, I(X;Y ). It measures the

average reduction in uncertainty in the state of X when the state of Y is known,

and thus the increase in information. The mutual information is a symmetric

measure, in that I(X;Y ) = I(Y ;X), i.e. the information gained about X when

Y is known is equal to the information gained about Y when X is known. This

leads to several equivalent definitions for the mutual information,

I(X;Y ) = H(X)−H(X|Y ) (2.21)

= H(Y )−H(Y |X) (2.22)

= H(X) +H(Y )−H(XY ) (2.23)
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The mutual information can also be expressed as the KL-Divergence2 between the

joint distribution p(x, y) and the product of both marginal distributions p(x)p(y),

defined as follows

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.24)

With this formulation we can see how the mutual information reaches its max-

imal and minimal values more easily. The maximal value is the minimum of

the two entropies H(X) and H(Y ), and occurs when knowledge of one variable

allows perfect prediction of the state of the other. In the above equation this

is due to p(x, y) becoming equal to either p(x) or p(y) for all values, and then

the KL-Divergence cancels down to Equation (2.16), the standard entropy. The

minimal value is 0, which occurs when X and Y are independent. In the above

equation this causes p(x, y) to factorise into p(x)p(y), thus the fraction is unity,

and the logarithm becomes zero. In the field of feature selection it is common to

use a normalised function of the mutual information, termed the Symmetric Un-

certainty. This is the mutual information between the two variables normalised

by the sum of their marginal entropies, therefore

SU(X;Y ) =
I(X;Y )

H(X) +H(Y )
(2.25)

It is commonly advocated instead of the mutual information as unlike the mutual

information it is not biased towards high arity variables, and is thus useful when

comparing the scores for variables with differing numbers of states.

There is one final commonly used concept in Information Theory, the Con-

ditional Mutual Information between two variables, conditioned on a third. The

most common definition is in terms of the chain rule of mutual information, which

describes how the information content of a pair of variables can be broken down

in several equivalent ways,

I(XZ;Y ) = I(Z;Y ) + I(X;Y |Z) (2.26)

= I(X;Y ) + I(Z;Y |X) (2.27)

= I(X;Y ) + I(Z;Y )− I(X;Z) + I(X;Z|Y ). (2.28)

2The KL-Divergence is also referred to as the relative entropy.
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The conditional mutual information measures the dependency between two vari-

ables when the state of a third is known, and is defined in terms of an expected

KL-Divergence as follows,

I(X;Y |Z) =
∑
z∈Z

p(z)I(X;Y |Z = z) (2.29)

=
∑
z∈Z

p(z)
∑
x∈X

∑
y∈Y

p(x, y|z) log p(x, y|z)
p(x|z)p(y|z) . (2.30)

Unlike the conditional entropy, the conditional mutual information can be larger

than the unconditioned mutual information. This is due to a positive interaction

between the variables, where the dependency between two variables is increased

by the knowledge of the state of a third. Again like the mutual information, the

conditional mutual information is zero when the two variables are independent,

conditioned on the presence of the third variable. The maximal value of the

conditional mutual information is the minimum of the two conditional entropies

H(X|Z) and H(Y |Z), again achieved when knowledge of one variable (and the

conditioning variable) allows perfect prediction of the state of the other. We will

see an important use of the conditional mutual information when we investigate

structure learning in Bayesian Networks in the next chapter. In Chapters 4 and

5 we will see how the conditional mutual information is particularly important in

the context of filter feature selection.

2.3.2 Bayes error and conditional entropy

One of the reasons for the popularity of Information Theory in Machine Learning

is the existence of bounds on the Bayes Error of a classification problem, defined

in terms of the Conditional Entropy. There exists both an upper and lower

bound in terms of the conditional entropy and the range between these bounds

shrinks as the conditional entropy decreases. The lower bound was proved by

Fano in 1961 [39], and the upper bound was proved by Hellman and Raviv in

1970 [55]. They form the informal basis for the use of mutual informations as

feature selection criteria, which we explore in the next chapter. We will derive an

alternate justification for the use of mutual information based criteria in Chapter

4.

For a two class problem the Bayes error is bounded by the conditional entropy
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as follows:
H(Y |X)− 1

log |Y | ≤ ebayes ≤
1

2
H(Y |X). (2.31)

With these bounds we can see that the conditional entropy represents the con-

straint placed upon the class label by the data. If the data does not constrain

the choice of class label then for any given feature vector, there may be multiple

different classes which could be assigned, so there is still a large amount of un-

certainty in the choice of class label, and thus the Bayes error will be high. If the

data tightly constrains the choice of class label then on average a given feature

vector will only have one possible class, and thus the Bayes error will be low.

Therefore a large value of H(Y |X) implies the features alone do not have enough

information to create a good classification boundary, whereas a small value of

H(Y |X) implies the features contain sufficient information to produce a good

boundary.

We can see the link between mutual information and feature selection by con-

sidering how the mutual information decomposes into sums of entropies, as in

Equation (2.21). As the entropy of the class label H(Y ) is constant, maximising

the mutual information I(X;Y ) between the features and the class label is equiv-

alent to minimising the conditional entropy H(Y |X), which in turn minimises the

Bayes Error. Therefore finding a feature set Xθ which maximises I(Xθ;Y ) will

minimise the bound on the Bayes rate, and thus provide an informative feature

set for any future classification process. We will look at the literature in informa-

tion theoretic feature selection more closely in the next chapter, before deriving a

more concrete link between the mutual information and the classification process

in Chapter 4.

One further important point about the conditional entropy is that it is the

limit of the scaled conditional log-likelihood of the labels given the data,

lim
N→∞

1

N
log

N∏
i=1

p(yi|xi) = H(Y |X). (2.32)

This assumes that the distribution p is perfectly estimated, which is in general

untrue. Estimating these information theoretic quantities is a topic we review in

the next section, whilst we return to the link between likelihood and information

theory in Chapter 4.
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2.3.3 Estimating the mutual information

The problem of calculating mutual informations reduces to that of entropy es-

timation, and in turn to the problem of estimating probability distributions. A

thorough review of this topic is available in Paninski [83], and we provide a brief

summary of the relevant issues in this section. We begin with some extra nota-

tion, introducing p̂ to denote a probability distribution which has been estimated

from a dataset sampled from the true distribution p. We can write the mutual

information as the expected logarithm of a ratio of probabilities:

I(X;Y ) = Exy

{
log

p(x, y)

p(x)p(y)

}
. (2.33)

We can estimate this from data, as the Strong Law of Large Numbers assures us

that the sample estimate using p̂ converges almost surely to the expected value

— for an i.i.d. dataset of N observations (xi, yi),

I(X;Y ) ≈ Î(X;Y ) =
1

N

N∑
i=1

log
p̂(xi, yi)

p̂(xi)p̂(yi)
. (2.34)

In order to calculate this we need the estimated distributions p̂(x, y), p̂(x), and

p̂(y). The computation of entropies for continuous or ordinal data is highly

non-trivial, and requires an assumed model of the underlying distributions —

to simplify experiments throughout this thesis, we use discrete data and estimate

distributions with histogram estimators using fixed-width bins. The maximum

likelihood estimate of the probability of an event p(X = x) is given by the fre-

quency of occurrence of the event X = x divided by the total number of events

(i.e. datapoints). There exist many other methods for estimating entropy, though

they fall into two main approaches: plug-in estimators which first estimate the

probability distributions p̂, and direct entropy estimators which calculate the en-

tropy from data without constructing probability distributions (e.g. Póczos and

Schneider [90]). For more information on alternative entropy estimation proce-

dures, we refer the reader to Paninski [83].

At this point we must note that the approximation above holds only if N is

large relative to the dimension of the distributions over x and y. For example

if x, y are binary, N ≈ 100 should be more than sufficient to get reliable esti-

mates; however if x, y are multinomial, this will likely be insufficient. If we wish
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to measure the information between a set of variables Xθ and a particular target

variable then the quality of our estimate depends on the number of states in our

set Xθ. As the dimension of the variable Xθ grows then the necessary probabil-

ity distributions become more high-dimensional, and hence our estimate of the

mutual information becomes less reliable. This in turn causes increasingly poor

judgements in any process we might base upon the mutual information. For pre-

cisely this reason, the feature selection literature contains many low-dimensional

approximations to the complex high-dimensional mutual information. We review

a selection of these approximations in Section 3.2, and a unification of these var-

ious criteria (found in Chapter 5) forms a substantial part of the contributions of

this thesis.

For the remainder of this thesis, we use notation I(X;Y ) to denote the ideal

case of being able to compute the mutual information, though in practice on real

data we use the finite sample estimate Î(X;Y ).

2.4 Weighted Information Theory

We now briefly explore Guiaşu’s formulation of Information Theory as an alter-

native way of measuring the uncertainty in a random variable, incorporating a

measure of how important or costly each state is. This topic has received little

attention in the literature, and one of the contributions of Chapter 7 will be a

more thorough treatment of the weighted mutual information.

The weighted entropy was first defined as the “Quantitative-Qualitative mea-

sure of information” by Belis and Guiaşu [8]. It was termed this as it incorporated

“qualitative” measures of the importance of a state into the “quantitative” mea-

sure of the entropy, using the probabilities of each state. An extensive theoretical

treatment of the subject was written by Guiaşu [46] where the measure is re-

named the Weighted Entropy. It is defined for a variable X with respect to the

distribution p(x) and a set of weights w(x) ≥ 0 as follows,

Hw(X) = −
∑
x∈X

w(x)p(x) log p(x). (2.35)

Due to the presence of the weights, it is no longer bounded with respect to the

number of states inX, but by wmax log |X|, where wmax denotes the largest weight

in w. This measure is non-negative like the Shannon Entropy, and reduces to the
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Shannon Entropy when all the weights are equal to one. The weights w do not

have to be normalised into the range 0 ≤ w ≤ 1, though any such normalisa-

tion will not change the relative values of the entropy, due to the linearity of

expectation.

To ensure that Hw conforms to the axioms of an entropy measure (as listed in

Guiaşu [46]) the weights for joint events must be constructed in a specific way. For

any joint event E∪F the weight w(E∪F ) is defined in terms of the probabilities

and the weights of the individual events E and F . In general w(E∪F ) is defined

as follows,

w(E ∪ F ) =
p(E)w(E) + p(F )w(F )

p(E ∪ F )
. (2.36)

We can express this definition in a more useful form, with respect to distributions

over the states x ∈ X and y ∈ Y as follows,

w(x)p(x) =
∑
y∈Y

p(x, y)w(x, y). (2.37)

It is this property of the weights which allows the definition of a conditional

entropy as the joint entropy minus a marginal entropy,

Hw(X, Y ) = Hw(Y |X) +Hw(X)

= Hw(X|Y ) +Hw(Y ). (2.38)

This is in contrast to other extensions to entropy such as Rényi’s [92] or Tsallis’

[105], which do not lead to natural definitions of the conditional entropy as a

function of the joint distribution. It is precisely this marginalisation property

of the conditional entropy which ensures the three definitions of the (Shannon)

mutual information given in Equations (2.21—2.24) are equivalent.

In the same book [46] Guiaşu briefly defines a “weighted entropic measure

of cohesion”, which is the sum of two marginal weighted entropies, minus the

joint weighted entropy. Luan et al. [75] also defined a similar quantity as the

“Quantitative-Qualitative measure of mutual information”, and Schaffernicht and

Gross [96] define this quantity as the Weighted Mutual Information. This lat-

ter term is the one we will use throughout this thesis. The weighted mutual
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information is defined as,

wI(X;Y ) = Hw(X) +Hw(Y )−Hw(X, Y )

= Hw(Y )−Hw(Y |X)

=
∑
x∈X

∑
y∈Y

w(x, y)p(x, y) log
p(x, y)

p(x)p(y)
. (2.39)

The final definition is in the form of a weighted relative entropy [102], between

p(x, y) and p(x)p(y). However there is a flaw with this weighted information

measure, which was shown for the weighted relative entropy by Kv̊alseth in 1991

[68], namely that the measure can take negative values, i.e. for some X and Y ,

wI(X;Y ) < 0. This is a problem with the weighted mutual information which

has restricted its use in the literature, as there is no intuitive understanding of

what a negative information might mean. We provide examples of situations

with negative weighted mutual informations in Chapter 7 and there define an

new weighted information measure which is provably non-negative.

2.5 Chapter Summary

In this chapter we reviewed the background knowledge of Machine Learning, clas-

sification and Information Theory necessary to understand the contributions in

the remainder of this thesis. We also looked at cost-sensitive learning approaches

based upon manipulating the data, or altering the output of the classification

system. In summary:

• We looked at the classification process, several common algorithms (SVM,

k-NN, and Näıve Bayes), and various different metrics for evaluating clas-

sification performance.

• We looked at the central role of probability theory in machine learning, and

how it measures the certainty of a prediction. We also reviewed the notion

of model likelihood and how it measures classification performance.

• We investigated cost-sensitive classification, looking at the Bayes Risk and

how different approaches seek to minimise it. We looked at the two main ap-

proaches, data manipulation and classifier manipulation, noting the trade-

offs made by each approach.
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• Finally we looked at Information Theory, examined the basic methods of

measuring information, and saw the strong links between information the-

oretic values and classification performance. We also looked briefly at an

extension of information theory which incorporates weights, leading to a

measure of how costly the uncertainty in a variable is.

In the next chapter we have a detailed review of the literature in feature selec-

tion and structure learning which gives the landscape in which the contributions

exist, detailing the state of the art in feature selection and pinpointing areas

where this thesis advances the state of the art.



Chapter 3

What is feature selection?

In this chapter we review the literature surrounding feature selection. We begin

by introducing the topic of feature selection, detailing the major concepts and

approaches. In Section 3.1 we explore the three main paradigms for feature selec-

tion: filters, wrappers and embedded methods. We present a detailed review of

the literature surrounding information theoretic filter feature selection in Section

3.2. We look at more general feature selection approaches which include prior

knowledge in Section 3.3, and feature selection in multi-class spaces in Section

3.4. In Section 3.5 we explore Bayesian Networks as a way of modelling systems,

and investigate how learning the structure of a Bayesian Network is a special

case of the feature selection problem. Finally we detail the main algorithms for

structure learning in Section 3.6, looking at the differences between global and

local algorithms, and those which use conditional independence tests versus those

which optimise a function of the network.

3.1 Feature Selection

Feature Selection is the process of determining what inputs should be presented to

a classification algorithm. Originally feature selection was performed by domain

experts as they chose what properties of an object should be measured to try

and determine the class label. Modern classification problems attempt to collect

all possible features, (e.g. in gene expression tasks, many thousands of genes are

tested) and then use a statistical feature selection process to determine which

features are relevant for the classification problem. In Chapter 6 we develop

a novel method for integrating domain experts back into the feature selection

49



50 CHAPTER 3. WHAT IS FEATURE SELECTION?

process.

Feature selection algorithms of all kinds rely upon a single assumption about

the data, that the feature set contains irrelevant and/or redundant features. Ir-

relevant features contain no useful information about the classification problem,

and redundant features contain information which is already present in more in-

formative features. If we can select a feature set which does not include these

irrelevant or redundant features then we can reduce the collection cost of the

feature set, and we can investigate the remaining relevant features to determine

how they relate to the class label. We may also improve classification perfor-

mance by reducing the potential for overfitting when shrinking the feature set.

These heuristic notions of relevancy and redundancy were formalised by Kohavi

& John [62] into three classes: strongly relevant, weakly relevant, and irrelevant.

In the definitions below, Xi indicates the ith feature in the overall set X, and X\i
indicates the set {X\Xi}, i.e. all features except the ith.

Definition 5. Strongly Relevant Feature [62]

Feature Xi is strongly relevant to Y iff there exists an assignment of values xi,

y, x\i for which p(Xi = xi, X\i = x\i) > 0 and p(Y = y|Xi = xi, X\i = x\i) �=
p(Y = y|X\i = x\i).

Definition 6. Weakly Relevant Feature [62]

Feature Xi is weakly relevant to Y iff it is not strongly relevant and there exists

a subset Z ⊂ X\i, and an assignment of values xi, y, z for which p(Xi = xi, Z =

z) > 0 such that p(Y = y|Xi = xi, Z = z) �= p(Y = y|Z = z).

Definition 7. Irrelevant Feature [62]

Feature Xi is irrelevant to Y iff it is not strongly or weakly relevant.

The strongly relevant features are not redundant as each one contains use-

ful information that is not present in any other combination of features. The

weakly relevant features contain information which is either already present in

the strongly relevant features, or exists in other weakly relevant features. The

irrelevant features contain no useful information about the problem. We would

like a feature selection algorithm to return the set of strongly relevant features,

plus a (potentially empty) subset of the weakly relevant features, excluding the

irrelevant features. Unfortunately these definitions do not lend themselves to

the construction of a feature selection algorithm, as they require checking expo-

nentially many combinations of features to ascertain weak relevancy. They also
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are quite abstract quantities, and we will relate their notions of relevancy and

irrelevancy to concrete information theoretic quantities in Chapter 5.

We now introduce a small amount of notation and thus formally define the

feature selection problem. Throughout this thesis we will use θ as a binary vector

of length d where d is the number of features, θi = 1 means the i’th feature is

selected and θi = 0 means it is ignored. We shall define ¬θ as the negation of

the vector θ, thus denoting the unselected features. We formally define feature

selection by stating the mapping φ : X → Y uses a subset of the features θrel, with

the remaining features ¬θrel being redundant or irrelevant. Therefore φ : X → Y

is equivalent to φ′ : Xθrel → Y where Xθrel is the subset of X containing the

features selected by θrel. The concept of sparsity in the statistics literature [10]

is related to the process of feature selection. A sparse solution to a prediction

problem means that few of the features are involved in the prediction, hence we

can think of feature selection as enforcing sparsity on the solution. The term

arises from matrices where a sparse matrix is one with few non-zero elements. In

our case we say θ is sparse if it has few set bits, thus the feature set selected by

θ is also sparse. The choice of search function is important in feature selection

problems as the space of possible feature subsets is the powerset of the dimension,

thus the number of possible feature sets is 2d. Therefore examining all possible

feature sets is intractable for any reasonably sized problem.

Feature selection algorithms are a subset of the more general feature extraction

algorithms. Feature extraction techniques produce a new feature set by processing

the original set. This can be by combining multiple features, or projecting the

feature set into a higher or lower dimensional space. Such techniques are useful

when the classification algorithm cannot understand the current representation,

e.g. we can see the kernel trick in SVM classifiers as a form of feature extraction

(see Section 2.1.2). In feature selection we extract features by returning a relevant

subset of the input feature set. For the remainder of this thesis we will focus on

feature selection algorithms, of which there are three main kinds: filters, wrappers

and embedded methods. Filters and wrappers are defined by two things, the

evaluation function or criterion which scores the utility of a feature or a feature

set (which we term J), and the search algorithm which generates new candidate

features or feature sets for evaluation. We show the general form of a filter

or wrapper algorithm in Algorithm 1. Embedded methods are feature selection

techniques which are integrated into a particular classification algorithm therefore
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Algorithm 1 The general form of a filter/wrapper

Require: A dataset D, with features X and label Y
Initialise candidate feature subset S
while Stopping criterion == False do
Propose new candidate subset S ′ based on S
Evaluate J(S ′)
if J(S ′) > J(S) then
S = S ′

end if
end while

separating out the evaluation function from the search procedure is more difficult.

We explore the main differences between the three approaches below.

3.1.1 Filters

Filter approaches use a measure of relevancy or separation between the candidate

feature or feature set and the class label as the scoring function for that feature

or feature set. These measures range from simple correlation measures such as

Pearson’s Correlation Coefficient [85], through complex correlation measures such

as the mutual information (discussed in Section 2.3), to complex measures of inter

and intra class distances, used in the Relief algorithm [60]. All these measures

return a number which represents the strength of the relationship between the

candidate feature set and the class label. This relationship might be a measure of

information, or a measure of the separability of the classes based on that feature

set. Other common measures, are based upon probabilistic independence, which

is a topic we discuss in more detail in Section 3.5. Much of the early work in filter

feature selection focused on different kinds of distance or divergence metrics, both

probabilistic and based directly upon the data [30]. We call the scoring function

a feature selection criterion, and the study of the criteria based on information

theoretic measures is the topic of this thesis.

Filter algorithms can be further divided into those which measure univariate

relationships or multivariate relationships. Univariate measures only consider the

relationship between the candidate feature and the class label, ignoring any inter-

actions with the previously selected features. In contrast, multivariate methods

measure the relationship in the context of previously selected features. This can

either increase or decrease the strength of the relationship between the candidate
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feature and the class label, but (in general) better represents how it would work

in a classifier. A more detailed review of scoring criteria is found in Duch [34]. In

this thesis we focus on a set of filter algorithms which use variations on informa-

tion theoretic measures (see Section 2.3 for a description of Information Theory)

to measure the interaction between features, and to measure the correlation with

the class label. We review the information theoretic filter literature in more detail

in Section 3.2.

The scoring criteria is coupled with a search method which describes how

the candidate feature sets are selected (see Reunanen [93] for a review of search

strategies for both filter and wrapper approaches). The complexity of the scoring

criteria usually dictates the complexity of the search method, as univariate criteria

will not benefit from complex search methods, due to their inability to consider

feature interactions. Many common filters (e.g. Relief [60] or mRMR [86]) use

greedy forward or backward searches, testing each feature in turn for inclusion

(exclusion) and adding (removing) the feature which scores the highest (lowest).

More complex searches include “floating” methods [91] which dynamically adjust

the size of the selected feature set, adding features when they improve the scoring

criteria and removing those features which do not decrease the criteria. There

exist optimal search strategies based upon Branch & Bound methods [99] which

can exclude groups of features from consideration if they can never improve in

performance. However such complex search algorithms are unnecessary in certain

situations, notably in the case of Bayesian Networks where the Markov Blanket

can be recovered using a greedy search (see Section 3.6). For the remainder of

this thesis we will use greedy searches to test our scoring criteria, and leave the

investigation of more complex search methods to future work.

The choice of stopping criterion is also an important question in filter methods,

as there is no error measure to monitor the performance. In general either a fixed

number of features is selected or the search continues until the score measure

for all remaining unselected features drops below a threshold. Again as we are

interested in the scoring criterion itself we will leave the investigation of stopping

criteria to future work, and simply select a fixed number of features.

One benefit of filter methods is due to the use of abstract measures of correla-

tion between variables, they return a feature set which should perform well across

a wide range of classification algorithms, assuming the filter does not have dras-

tically different assumptions to the classifier (a topic we investigate in Chapter



54 CHAPTER 3. WHAT IS FEATURE SELECTION?

5). Filter methods are usually the fastest of the three kinds of feature selection

technique mentioned here as they do not require the training of a classification

algorithm to score the features.

3.1.2 Wrappers

In contrast to filters, wrapper approaches (e.g. Kohavi & John [62]) use the

performance of a classification algorithm on a particular testing dataset as the

evaluation function. This means the feature set is closely tailored to the classifi-

cation algorithm used, and may not perform well if used with a different classifier.

The name comes from the feature selection process being “wrapped” around a

particular classification algorithm.

To evaluate the utility of a particular feature, it is included in the current

selected feature set and the performance of the feature set as a whole is tested

on the training data. This is a time intensive process as it involves training the

classifier, and then testing on all the datapoints. However it does fully capture

all the interactions between the features (that the classifier can use), and is thus

unlikely to select redundant features.

In general the classification algorithm used in the wrapper is the same as the

final classification algorithm which will form the final system, and so the main

issue with wrapper methods is the choice of search method and stopping criterion.

Much of what was mentioned in the previous section on filter methods is valid

for the choice of search method and stopping criterion with wrappers.

3.1.3 Embedded methods

Embedded methods are a disparate group of feature selection algorithms which

are similar to wrappers in that they use a classification algorithm in the feature

selection. The feature selection process is “embedded” into the construction of

the classifier, as the classifier learns the appropriate weights for a given feature,

and potentially removes it from consideration. The term embedded methods thus

covers a wide range of different feature selection techniques, making it difficult to

analyse them as a group beyond their dependency on a particular classification

algorithm. Common examples of this approach are the Recursive Feature Elim-

ination algorithm for SVMs (SVM-RFE) [51] which repeatedly trains an SVM,

at each stage removing features which are given a low weight by the SVM; and
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the LASSO regression algorithm [104] which drives the weights of irrelevant fea-

tures to zero in the process of constructing a linear model. We will look at Lasso

in more detail when we discuss feature selection algorithms which include prior

knowledge in Section 3.3. Like wrapper algorithms, embedded methods produce

feature sets which are closely tied to the classification algorithm used. Again this

may cause the feature sets to perform poorly when used with other classification

algorithms, or if the feature set is used for further analysis of the underlying

problem.

We have now reviewed the three main approaches to feature selection. Now

we will explore the literature surrounding information theoretic filter algorithms,

which are the topic of this thesis.

3.2 Information theoretic feature selection

An information theoretic filter algorithm is one that uses a measure drawn from

Information Theory (such as the mutual information we described in Chapter

2) as the evaluation criterion. Evaluation criteria are designed to measure how

useful a feature or feature subset is when used to construct a classifier. We will

use J to denote an evaluation criterion which measures the performance of a

particular feature or set of features in the context of the currently selected set.

The most common heuristic evaluation criteria in information theoretic feature

selection is simply selecting the feature with the highest mutual information to

the class label Y , resulting in

Jmim(Xk) = I(Xk;Y ). (3.1)

We refer to this feature scoring criterion as ‘MIM’, standing for Mutual Infor-

mation Maximisation. This heuristic, which considers a score for each feature

independently of others, has been used many times in the literature, the first

mention of such a scoring procedure is in Lewis (1962) [73] though it is not ex-

plicitly referred to as a mutual information. It reappears in more recent work

under different guises, e.g. Lewis (1992) [72]. This criterion is very simple, and

thus the choice of stopping condition in the search is more important than the

search algorithm itself. This is because it is a univariate measure, and so each

feature’s score is independent of the other selected features. If we wish to select
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k features using MIM we will pick the top k features, ranked according to their

mutual information with the class. We could also select features until we had

reached a predefined threshold of mutual information or another condition, but

the choice of search would make little difference. We saw in Chapter 2 how the

mutual information can be used to construct both an upper and lower bound on

the Bayes error rate [39, 55], and these bounds form the justification for the use

of this simple criterion. Unfortunately the independence assumed by measuring

each feature’s score without considering the currently selected features is a se-

rious limitation of this approach. If all the features are independent then the

assumption holds, and MIM will select a useful feature set. However the assump-

tion of independent features is untrue in the vast majority of cases, and thus this

approach is usually suboptimal.

We saw in the previous section that a useful and parsimonious set of features

should not only be individually relevant, but also should not be redundant with

respect to each other — selected features should not be highly correlated to other

selected features. We note that while this statement is appealingly intuitive, it

is not strictly correct, as we shall see in the next chapter. In spite of this, several

criteria have been proposed that attempt to pursue this ‘relevancy-redundancy’

goal. For example, Battiti [6] presents the Mutual Information Feature Selection

(MIFS) criterion:

Jmifs(Xk) = I(Xk;Y )− β
∑
Xj∈S

I(Xk;Xj), (3.2)

where S is the set of currently selected features. This includes the I(Xk;Y )

term to ensure feature relevance, but introduces a penalty to enforce low corre-

lations with features already selected in S. MIFS was constructed (like many of

the criteria in this chapter) to use a simple sequential forward search, greedily

selecting the best feature in each iteration. The β in the MIFS criterion is a

configurable parameter, which must be set experimentally. Using β = 0 is equiv-

alent to Jmim(Xk), selecting features independently, while a larger value will place

more emphasis on reducing inter-feature dependencies. In experiments, Battiti

found that β = 1 is often optimal, though with no strong theory to explain why.

The MIFS criterion focuses on reducing redundancy; an alternative approach was

proposed by Yang and Moody [110], and also later by Meyer et al. [80] using the
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Joint Mutual Information (JMI), to focus on increasing complementary informa-

tion between features. The JMI score for feature Xk is

Jjmi(Xk) =
∑
Xj∈S

I(XkXj;Y ). (3.3)

This is the information between the target and a joint random variable XkXj,

defined by pairing the candidate Xk with each feature previously selected. The

idea is if the candidate feature is ‘complementary’ with existing features, we

should include it.

The MIFS and JMI schemes were the first of many criteria that attempted to

manage the relevance-redundancy trade-off with various heuristic terms, however

it is clear they have very different motivations. The criteria identified in the lit-

erature 1992-2011 are listed in Table 3.1. One of the more popular criteria which

trades off relevancy and redundancy is the Fast Correlation Based Filter (FCBF)

of Yu & Liu [112]. This criterion selects a feature provided its individual rele-

vancy I(Xi;Y ) is greater than the redundancy between Xi and any of the selected

features Xj ∈ S, I(Xi;Xj). The standard approach to creating filter criteria is to

hand-design them, constructing a criterion from different terms where each term

deals with a different part of the selection problem. It is common to see a rele-

vancy term for an individual feature combined with some number of redundancy

terms between that feature and the currently selected feature set. This has lead to

many different criteria, each of which aims to manage the relevancy-redundancy

trade-off in a different way. Several questions arise here: Which criterion should

we believe? What do they assume about the data? Are there other useful criteria,

as yet undiscovered? We explore these questions in Chapter 5 and the answers

provide the basis for much of the work in this thesis.

There has been some previous work aiming to answer some of these questions;

one of the first attempts to unify these varying criteria is due to Brown [12],

which viewed them as approximations to the full mutual information I(S;Y )

between the set of selected features S and the label Y . This can be expanded

into a series of terms based upon McGill’s Interaction Information [78], and many

of the criteria were found to follow a similar functional form which curtailed

the expansion at a particular point. Balagani and Phoha [5] investigate the

links between the mRMR, MIFS and CIFE criteria showing how each trades off

different information theoretic terms to produce a scoring criteria and how these
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Criterion Full name Ref
MIM Mutual Information Maximisation [72]
MIFS Mutual Information Feature Selection [6]
KS Koller-Sahami metric [63]
JMI Joint Mutual Information [110]
MIFS-U MIFS-‘Uniform’ [69]
IF Informative Fragments [109]
FCBF Fast Correlation Based Filter [112]
AMIFS Adaptive MIFS [103]
CMIM Conditional Mutual Info Maximisation [40]
mRMR Min-Redundancy Max-Relevance [86]
ICAP Interaction Capping [58]
CIFE Conditional Infomax Feature Extraction [74]
DISR Double Input Symmetrical Relevance [79]
MINRED Minimum Redundancy [34]
IGFS Interaction Gain Feature Selection [36]
SOA Second Order Approximation [48]
mIMR Min-Interaction Max-Relevance [11]
CMIFS Conditional MIFS [20]

Table 3.1: Various information-based criteria from the literature. In Chapter 5
we investigate the links between these criteria and incorporate them into a single
theoretical framework.

terms affect the selected feature set. We present a different view of all these

criteria in Chapter 5 where we investigate the links between them at a deeper

level, namely what assumptions are they making about the underlying probability

distribution p.

We now investigate an area with little relation to the information theoretic

algorithms we have discussed, namely that of feature selection incorporating prior

(domain) knowledge. In Chapter 6 we will see how to construct information

theoretic algorithms which naturally incorporate such knowledge.

3.3 Feature selection with priors

We now turn to algorithms which allow the inclusion of prior knowledge into the

feature selection process. This knowledge can take many forms, from information

about the relevancy of specific features, or groups of features, to a preference for a

certain size of feature set (or sparseness of the solution). The canonical algorithm

which includes a sparsity prior is the LASSO [104] for regression using generalised
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linear models. The LASSO performs an L1 regularisation of the weight vector

of the linear model, necessarily driving many of the weights to zero, leaving only

the weights (and thus features) which are necessary for a good prediction. This

can be expressed as follows,

E(D,w) =
N∑
i=1

(yi −wTxi)2 + λ

d∑
j=1

|wj|. (3.4)

This is the error for a given training dataset D and weight vector w, where λ

is a parameter which controls the strength of the regularisation, and thus the

amount of non-zero weights in w. There have been many extensions to the basic

framework, incorporating different kinds of knowledge in addition to a general

sparsity prior. Helleputte and Dupont [54] present a good example of this recent

work in informative priors for regularized linear models. They develop a prior

for an approximate zero-norm minimization, constraining some of the dimensions

according to knowledge gained from the biological literature.

Yu et al. [113] encode knowledge via constraints on a kernel canonical corre-

lation analysis (KCCA) used to estimate the mutual information between a pair

of features. They incorporated this modified mutual information estimate into

the FCBF [112] algorithm, and use it to select features as inputs to regression.

These constraints forced the KCCA to return a score above a certain value if their

knowledge indicated a link between the features. However they do not investigate

the effects of imposing incorrect constraints on their algorithm.

Krupka et al. [65] define meta-features, where each feature is qualified by addi-

tional information, and a mapping is learnt from meta-features to some measure

of feature ‘quality’. Knowledge can then be transferred between tasks by learning

the feature-quality mapping for similar problems; however the challenge remains

to define a good quality measure and reliably learn the mapping.

When we look at Bayesian Networks and structure learning in Section 3.6 we

will find other algorithms which can incorporate prior knowledge into the feature

selection process in terms of explicit prior structure, and more general network

features.
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3.4 Multi-class and cost-sensitive feature selec-

tion

Multi-class datasets pose a particular problem for feature selection algorithms,

as features predictive of one class may not help predict others. In the binary

case this is unlikely to lead to poor performance but in a multi-class problem

this can lead to a feature set which has poor predictive performance for entire

classes. This problem can be linked to the issue of cost-sensitive classification

which we reviewed in the previous chapter, as with more classes there is more

opportunity for them to have unbalanced misclassification costs. There may also

be an unbalanced class distribution where some classes have a very small number

of training examples, which can be interpreted as a cost-sensitive problem. In this

section we review the literature in multi-class and cost-sensitive feature selection

which will form the basis of the novel material in Chapter 7 where we derive

a cost-sensitive feature selection criteria. A more extensive survey of empirical

performance on multi-class datasets is found in Forman [42].

One work which highlights the main issue in multi-class feature selection is by

Forman [43], which explores the problem of classes which have different predictive

feature sets. The analysis shows that even when each class has the same number

of examples, common filter feature selection algorithms like MIM and χ2 ranking

fail to select features which are predictive of all the classes. This leads to poor

performance on certain classes with few predictive features and good performance

on other classes which have strongly predictive features. The proposed solution

to this problem is termed Spread-FX, which generates a feature ranking for each

class using an input algorithm such as MIM, before selecting features using a

scheduler from the different feature rankings. The per class feature ranking is

generated by converting the multi-class problem into a one-versus-all problem,

where the current class is the positive label, and all other classes are the negative

label. The scheduling algorithm is then either an explicit round robin scheduler,

where the top ranked feature is selected from each class label in turn, or a proba-

bilistic scheduler where the next class is chosen by sampling from the distribution

over classes. This technique is shown to improve performance against all the uni-

variate ranking techniques in a wide variety of text-classification problems. An

extension is proposed to cost-sensitive feature selection by altering the distribu-

tion sampled by the probabilistic scheduler to incorporate cost information. One
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issue with this technique is that it is unclear how to adapt it to multivariate rank-

ing algorithms like MIFS or JMI, where the score given to a particular feature is

dependent upon the previously selected features.

The FCCF algorithm proposed by Chidlovskii and Lecerf [21] approaches the

multi-class problem from a different perspective. It is based upon the FCBF

algorithm discussed in Section 3.2, but modified so the exclusion heuristic takes

into account the presence of multiple classes. In addition to the standard FCBF

exclusion heuristic that the candidate feature Xi has shares more information

with a selected feature than the class label, it must also have less class specific

information than that selected feature. Therefore the feature Xi is excluded iff

∃ y ∈ Y,Xj ∈ S s.t. SU(Y = y;Xj) ≥ SU(Y = y;Xi) and SU(Xi;Xj) ≥
SU(Y ;Xi), where SU(X;Y ) is the symmetric uncertainty between X and Y (see

Section 2.3).

Chapelle and Keerthi [18] present a modification of L1-SVM to extend it to

the multi-class case. L1-SVM is a regularised version of the standard binary

SVM algorithm which like LASSO mentioned in the previous section performs

an L1 regularisation of the feature weight vector driving most of those weights to

zero, resulting in a sparse selected feature set. As SVMs are binary classification

algorithms the standard RFE and L1 methods select independent feature subsets

for each possible class. The proposed method shares the regularisation penalty

across all the individual SVM optimisation functions, thus ensuring that each

binary problem is properly penalised by the number of features in use.

The final algorithm we review is an explicit cost-sensitive feature selection al-

gorithm, which aims to select features which minimise the misclassification cost.

This approach is due to Robnik-Šikonja [95], and works with many univariate fea-

ture ranking procedures used in decision trees as splitting criteria. The proposed

technique adjusts the probabilities of each split criteria, altering the probability

for each class based upon the expected risk of misclassification as follows,

εy =
1

1− p(y)

|Y |∑
ŷ �=y

p(ŷ)C(y, ŷ) (3.5)

p′(y) =
p(y)εy∑|Y |
ŷ p(ŷ)εŷ

. (3.6)

In the equation above C(y, ŷ) is the cost of misclassifying class y as ŷ, and p(y) is

the marginal probability of the label y. This approach can be seen as extending
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the work of Elkan [38] to feature selection, as it effectively resamples the data

according to its expected misclassification cost. The new probability values can

then be incorporated into a function such as the mutual information to score the

features.

We now move to a different but related section of the literature, that relating

to Bayesian Networks and specifically the learning of network structure.

3.5 Bayesian Networks

A Bayesian Network is a model of a probability distribution which shows how the

variables interact in a system. They are first defined by Pearl [84] as a method

for encoding the interactions between variables, showing the independences in the

system. The whole system is modelled as a directed acyclic graph (DAG), with

the variables being nodes in the graph, and the arrows denoting the direction

of influence. In classification problems we also include the class label as a node

in the graph, in addition to all the features. Each node takes a state which is

probabilistically dependent on its parent nodes, and only those nodes. The graph

is acyclic (i.e. has no directed path from one node back to itself) to ensure no node

ends up as its own ancestor, as this could cause nodes to oscillate between states.

If there is no path between any two variables then the probability distributions

of those variables are independent. Any node is made conditionally independent

from the rest of the graph by its Markov Blanket, the set of all parents, children

and spouses (other parents of the child nodes) of that particular node. Any

set of nodes which removes the dependence between two other nodes is said to

d-separate those two nodes. The Markov Blanket can be seen as d-separating

the target node from the rest of the network. This is useful as it means that

only the states of the nodes in the Markov Blanket are required to predict the

state of the target node. A Bayesian Network classifier can be constructed by

encoding a set of independence statements between the features and the class

label, and then learning the probability distributions over the states of each node

conditioned on its parents. The Näıve Bayes classifier is an example of a Bayesian

Network classifier, where all the features are child nodes of the class label, and

are thus class-conditionally independent of each other. Figure 3.1 shows a generic

Bayesian Network, highlighting the Markov Blanket for the central node.
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Figure 3.1: A Bayesian network, with the target node shaded in red, and the
Markov Blanket of that node shaded in cyan.

We will formally define the properties of Bayesian Networks in terms of con-

ditional independences using the notation X ⊥⊥ Y |Z to mean X is conditionally

independent of Y given Z. A Bayesian Network can be defined for any probability

distribution where the following properties hold:

• Symmetry: X ⊥⊥ Y |Z ⇔ Y ⊥⊥ X|Z.

• Decomposition: X ⊥⊥ (Y ∪W )|Z ⇒ X ⊥⊥ Y |Z & X ⊥⊥ W |Z.

• Weak Union: X ⊥⊥ (Y ∪W )|Z ⇒ X ⊥⊥ Y |(Z ∪W ).

• Contraction: X ⊥⊥ Y |Z & X ⊥⊥ W |(Z ∪ Y ) ⇒ X ⊥⊥ (Y ∪W )|Z.

• Intersection: X ⊥⊥ Y |(Z ∪W ) & X ⊥⊥ W |(Z ∪ Y ) ⇒ X ⊥⊥ (Y ∪W )|Z.

One further important property of a Bayesian Network is faithfulness. A Bayesian

Network is said to be faithful to a probability distribution if the network encodes

all conditional independence statements which can be made about the distribu-

tion, and if the distribution has all conditional independence properties which

can be inferred from the network. The set of probability distributions which are

faithful to a Bayesian Network is smaller than the set of all probability distribu-

tions, and does not include distributions which have deterministic relationships

between nodes [84]. This means a Bayesian Network can model a smaller class

of problems than the general supervised learning approach. One important point

is that a node may have multiple different Markov Blankets if the probability

distribution is not faithful. An example of this problem is given in the TIED

dataset constructed by Statnikov et al. [101].
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3.6 Structure Learning

An important part of learning with Bayesian Networks is determining the graph

structure which relates the nodes. This can either be done by hand, where do-

main experts construct the relationships between the nodes, or through statistical

inference. The process is termed Structure Learning when the network is learned

algorithmically from a particular dataset. There are two different approaches to

structure learning, constraint-based or score and search. Constraint-based struc-

ture learning finds variables which are dependent upon each other and links the

two nodes. Once all links have been found, they are oriented using a variety

of different statistical tests, to produce the required DAG. Alternatively some

constraint-based algorithms start from a fully connected graph and use indepen-

dence tests to remove links between nodes which are conditionally independent.

Score and search methods use a scoring metric for how well the current network

structure fits the data, and then search in the space of possible structures for the

structure which maximises the score measure. The scoring metric is invariant to

certain valid permutations of the graph, therefore multiple graphs may have the

same score and so another method is required to differentiate between them.

There are strong links between structure learning algorithms and feature selec-

tion algorithms. This is due to the properties of Markov Blankets. As a Markov

Blanket is the set of nodes which make the target node independent from the rest

of the graph, it is also the set of features required for optimal prediction of that

target node [107]. Thus a structure learning algorithm can be thought of as a

global feature selection algorithm, which learns the features required to predict

each node in turn. In problems where the probability distribution p(x, y) is not

faithful to a Bayesian Network then there may be multiple possible structures,

all of which are in some sense a valid representation of that distribution. In this

case there are multiple Markov Blankets and thus many equally valid solutions

to the feature selection problem.

Conditional independence testing algorithms can be further divided into those

which do “local” learning, and those which do “global” learning [2]. Local learn-

ing algorithms are concerned with finding the Markov Blanket of a particular

node, and thus only give the local structure around that node. Global learning

algorithms aim to find the whole structure of the Bayesian Network, this struc-

ture can then be examined separately to find the Markov Blanket for any given

node.
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3.6.1 Conditional independence testing

As mentioned previously the Markov Blanket of a node is a solution to the feature

selection problem when working with Bayesian Networks. The Markov Blanket

discovery task is easier than the full structure learning task, as it does not re-

quire the orientation of the links between nodes, nor differentiating between the

indirectly connected spouse nodes and the directly connected parent and child

nodes. We first explore the local learning algorithms which use conditional inde-

pendence testing to find Markov Blankets. These algorithms are in practice very

similar to the filter feature selection algorithms we looked at in Section 3.2, and

we investigate these links in Chapter 6. They are also known as constraint-based

structure learning algorithms, and we will use the shorthand CB to refer to them

as a group. We then look at methods for combining local structure into global

structure, and other global structure learning methods.

Local structure learning

The first algorithm which attempted to learn the Markov Blanket of a node was

strictly a feature selection approach, presented in Koller & Sahami [63]. It pro-

ceeded via backwards elimination from the full feature set, removing the feature

which had the smallest interaction with the class label, given its (approximate)

Markov Blanket. This approximate algorithm is closest to the CMIM algorithm

we discuss as part of Chapter 5, in that each feature is scored by its minimal

interaction when conditioned on the selected feature set. This algorithm does

not return the Markov Blanket of the target node (usually the class label), but it

was used as a baseline in the development of other structure learning algorithms.

The first true structure learning algorithm is the Grow-Shrink (GS) algorithm

by Margaritis and Thrun [77]. This adopted the two stage algorithm which is

common to many local learning algorithms, first growing the candidate Markov

Blanket by adding new features until all remaining unselected features are condi-

tionally independent of the target, then shrinking the candidate Markov Blanket

to remove any false positives which may have been selected. This local algorithm

for constructing Markov Blankets is then ran over each node of the network, and

the resulting subgraphs are combined to construct a DAG for the entire network.

The choice of conditional independence test used in the algorithm is left unspec-

ified, as there are multiple ones which are suitable. The IAMB algorithm by

Tsamardinos and Aliferis [107] is a refinement of the GS algorithm. It uses a
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different ordering heuristic to choose in what order to select and remove features,

compared to the GS algorithm. This heuristic simply selects the feature which

has the largest conditional mutual information, and removes the feature which

has the smallest conditional mutual information. They state that this heuristic

improves the runtime of the algorithm by prioritising features which most improve

the quality of the returned Markov Blanket. The algorithm for IAMB is given in

Algorithm 2, though the general structure is true for most of the local structure

learning algorithms we explore in this section. The f(X;Y |CMB) in Algorithm

2 represents the conditional independence test used, and is a parameter of the

algorithm.

Algorithm 2 IAMB [107].

Phase 1 (forward)
CMB = ∅
while CMB has changed do
Find X ∈ Ω \ CMB to maximise f(X;Y |CMB)
if f(X;Y |CMB) > ε then
Add X to CMB

end if
end while
Phase 2 (backward)
while CMB has changed do
Find X ∈ CMB to minimise f(X;Y |CMB \X)
if f(X;Y |CMB \X) < ε then
Remove X from CMB

end if
end while

The authors of IAMB proceeded to publish several more data efficient variants

of the IAMB algorithm, which require fewer samples to accurately estimate the

necessary tests. The most common variants are the MMMB [106] and HITON [4]

algorithms. MMMB first finds the set of parents and children of a target node, by

finding the minimal set of nodes which makes each node most independent of the

target. This is similar to the heuristic proposed by Koller & Sahami for Markov

Blanket recovery in classification problems. Once the set of parents and children

have been found these are added to the candidate Markov Blanket. Then the

parents and children are found for each node in the candidate Markov Blanket,

and these are tested to see if they are spouse nodes of the original target. This

approach reduces the computation by only conditioning on the minimal set of
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nodes (i.e. the set of parents and children of the target). The HITON algorithm is

essentially similar to the MMMB algorithm, but is tailored for prediction tasks. It

uses a final wrapper to prune the candidate Markov Blanket by removing features

which do not affect classification performance.

One further local structure learning algorithm is the new variant of GS devel-

oped by Margaritis [76]. This extends the GS framework beyond the learning of

Markov Blankets to the general case of learning Markov Boundaries. This is still

a set of variables which make a particular node probabilistically independent from

the rest, but it includes cases which cannot be expressed as Bayesian Networks,

such as in the TIED dataset [101], where there are multiple different Markov

Blankets (which is not possible in a true Bayesian Network). The algorithm is

extended to test sets of variables for dependence in the inclusion phase. This

makes the algorithm exponential rather than polynomial in the number of nodes,

which precludes its usage in practice. Margaritis thus proposes a randomised ver-

sion, which randomly samples sets of a fixed size, tests each set for dependence,

and adds the set with the largest measured dependence (similar to the heuristic

ordering added in the IAMB algorithm).

Global structure learning

One of the first global structure learning algorithms was based upon the condi-

tional independence testing methodology, namely the PC algorithm by Spirtes

et al. [100]. This first constructs an undirected graph where the absence of a

link between two nodes indicates they are conditionally independent. After this

construction process each link is oriented (if possible) by analysing the graph

structure, as a Bayesian Network is an acyclic graph, so there are no directed

paths starting at one node and returning to that node. The PC algorithm is not

usually able to orient all the edges, and thus returns a partially directed graph

where some edges are left undirected. These partially directed graphs are usually

called “patterns” or “essential graphs”.

The PC algorithm is unusually reliant upon the quality of the independence

test used, as it uses the current graph state to construct the set of independence

tests needed for the next node. This causes errors to cascade through the graph

structure as one mistake produces an incorrect structure to base the next test

on, which in turn causes more failures [27]. This problem is partially solved by

the LGL family of algorithms developed by Aliferis et al. [2, 3] which learn the
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local structure for each node independently before combining each local structure

to learn the full graph. A local learning algorithm such as an IAMB variant is

used to learn the set of parents and children for each node in turn. Those local

structures are then used to produce an undirected graph for the whole structure

(as it cannot differentiate between the parents and the children) before using

another algorithm to orient the edges. In the paper they explore the use of the

BDeu score to orient the edges, which is an example of the score and search

methods we review in the next section.

3.6.2 Score and search methods

Score and search (S&S) methods for structure learning aim to maximise a function

of the network structure with respect to a given dataset. This can be analysed

in a similar way to a filter feature selection algorithm, as indicated by the name

score and search. Each technique is made up of the scoring function (or criterion)

and the search method used to maximise that scoring function.

Many of the techniques use similar search techniques based upon the concept

of a neighbourhood in graph space. From a given graph structure G the neigh-

bourhood of G, η(G), is defined as all DAGs which can be constructed from G

via addition, deletion or reversal of a single edge [82]. Within this neighbourhood

view there are many different search strategies based upon hillclimbing [53], Sim-

ulated Annealing [61], and Markov-Chain Monte-Carlo (MCMC) [82] techniques.

We will briefly outline a few scoring functions along with their associated search

methods.

The most common approaches found in the S&S literature are based upon the

Bayesian Dirichlet (BD) score [53]. This family of scoring functions make several

assumptions about the underlying true network which they are trying to recover:

1. The data is drawn from a multinomial, with positive probability everywhere

(i.e. there are no logical relationships between variables).

2. That the data generating parameters are both globally independent across

the network, and locally independent with respect to the state of the parent

set of a node.

3. That each node’s parameters only depend upon the parent set of that node.

4. That each node’s parameters form a Dirichlet distribution.
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The most popular member of this family is the BDe (Bayesian Dirichlet equiva-

lence) metric [53], which imposes an additional assumption, that equivalent net-

work structures should have the same score. This effectively replaces the Dirichlet

assumption, as the assumption of equivalence implies that all node parameters

are Dirichlet distributed. The BDe score for any given graph G given a training

dataset D is

p(D, G) = p(G)
d∏
i

Πi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij +Nij)

ri∏
k=1

Γ(N ′
ijk +Nijk)

Γ(N ′
ijk)

. (3.7)

In the equation above N is the number of datapoints, N ′ is the equivalent sample

size in the prior network (i.e. how strong the prior is), Nijk is the number of

examples where the ith node takes the kth state and the parent set of i takes the

jth state, and Γ is the gamma function. It is also possible to add more specific

domain knowledge about the possible structures by defining the prior p(G). This

measure is then paired with a neighbourhood search based upon hillclimbing or

simulated annealing. The hillclimbing approach simply moves to the graph in the

neighbourhood which most improves the BDe score, terminating when no graph

in the neighbourhood improves the score. This search method is very dependent

upon a good choice of the initial graph, which is usually constructed incorporating

all the available domain knowledge. Simulated annealing provides a more general

approach, where the next graph structure is allowed to have a lower BDe score

with a given probability based upon the current temperature. This temperature

is gradually lowered as the search progresses, allowing fewer and fewer moves

which decrease the score. The search terminates when a particular temperature

is reached and no more moves which increase the score are available. The BDeu

score mentioned previously is simply the BDe score with a uniform distribution

over possible structures [15].

Mukherjee and Speed [82] construct different kinds of structure priors for use

with the BDe score. This allows the prior knowledge to constrain abstract graph

features such as the number of parents of a node, or the connectivity between

two groups of nodes. They couple the BDe score and the structure priors with an

MCMC based search. The search aims to sample from the distribution p(G|D),

so the probability of various graph features can be calculated, along with the

most probable graph (i.e. the MAP solution). The proposal distribution for the

Metropolis-Hastings sampler used is based on the neighbourhood of the graph,
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only allowing proposals which are within the neighbourhood of the current graph.

This proposal distribution can optionally be modified to incorporate the prior

distributions over graph features. This in turn means graphs which are a priori

more likely to be proposed more often.

Grossman and Domingos [45] present a different take on the score and search

paradigm, as they wish to learn the structure of a Bayesian Network to construct a

classifier for a particular node. This can be seen as generalising the construction of

a Näıve Bayes classifier (see Chapter 2) to arbitrary network structures around the

class node Y . They do this by aiming to maximise the conditional log-likelihood

of the structure, inferring the individual node parameters from their maximum

likelihood estimates. This takes a discriminative approach to the learning of

structure which is a perspective we will examine more closely in the next chapter.

Each network structure is scored by the likelihood, L, of Y given the inputs X

as follows,

L(G|D) =
N∑
i=1

log p(yi|xi
1, . . . , x

i
d). (3.8)

This scoring function is coupled with the simple hillclimbing search used in BDe,

except it starts from the empty network which has no arcs. Unfortunately this

scoring function requires the estimation of the complex distribution p(y|x), which
requires a relatively large amount of data to calculate when there are many nodes

connected to Y . Carvalho et al. [16] present a new scoring function approximat-

ing the conditional log-likelihood which decomposes over the network structure,

allowing it to be calculated on a per node basis (thus reducing the complexity of

each estimated distribution). This function is an approximate factorised condi-

tional log-likelihood, and can be expressed as the sum of information theoretic

components plus a fixed constant which does not depend upon the network,

f̂L(G|D) =
d∑

i=1

(α+β)NI(Xi; Π(Xi)|Y )+βλNI({Y ;Xi; Π(Xi)})+const. (3.9)

In the above notation I({. . . }) denotes the interaction information [78], α, β

and λ are constants which do not depend on the network structure, and Π(Xi)

denotes the parent set of Xi. This is a decomposable measure, which means

each node contributes independently to the overall score for a particular graph

G. This score in particular links the conditional likelihood, information theory

and structure learning in a way which parallels the results presented in Chapters
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4 & 6, though our results provide a more general framework, and are applicable

to the general feature selection problem.

One final relevant score and search approach is that of de Campos [28]. This

paper describes a scoring function which is based upon measures of conditional

independence as calculated by the mutual information. Each node is scored by

the mutual information with it’s current parent set, penalised by a function of

the χ value expected if the parents are independent of the node. This leads to

a scoring function which is not a probability or log-probability unlike the other

measures we have discussed and is expressed as,

f(G,D) =
d∑

i=1

(
2NI(Xi; Π(Xi))−max

σi

|Π(Xi)|∑
j=1

χα,li,σi

)
. (3.10)

In the above equation α is the confidence level of the χ2 test, |Π(Xi)| is the

number of parents of Xi, σi are the possible permutations of the parent set, and

li,σi
is the degrees of freedom, based upon the number of possible states for each

permutation. Again this scoring function can be decomposed over the nodes, and

can be interpreted under the Minimum Description Length (MDL) framework

[94] as the decrease in description length between the candidate graph G and the

empty graph.

The twin approaches of conditional independence testing and score & search

initially appear to be very different, as the CB methods add links based upon

the value of an independence test, and S&S measures the change in global score

as the links are added, removed or inverted. In fact in the global case instances

of these two approaches are equivalent. Cowell [25] showed that for a given node

ordering with complete data, independence testing based upon the KL-Divergence

is identical to scoring networks by their log-likelihood. In Chapter 6 we present a

similar result for local structure learning with mutual information, showing that

this is exactly equivalent to hill-climbing the joint likelihood of the local structure

(which is a greedy search on the neighbourhood of the local structure graph).



72 CHAPTER 3. WHAT IS FEATURE SELECTION?

3.7 Chapter Summary

In this chapter we reviewed the literature surrounding feature selection and

Bayesian Networks which provide the landscape for the contributions of this the-

sis. In summary,

• We looked at feature selection, and the three main paradigms: filters, which

select features based upon a statistical measure of correlation; wrappers,

which select features based upon the performance of a classification algo-

rithm; and embedded methods, a wide group of algorithms which select

features as part of the classification process.

• We reviewed the literature on information theoretic filter algorithms, where

the relevancy and redundancy of a feature is scored using concepts such as

the mutual information.

• We looked at feature selection algorithms which can incorporate prior (do-

main) knowledge about the sparseness of the solution, or the relevancy of

particular features.

• We reviewed a selection of feature selection algorithms designed specifically

for multi-class environments, and looked at how they try to ensure they

have predictive features for all the classes.

• We looked at how Bayesian Network classifiers can be constructed to solve

classification problems, whilst giving more information about the structure

of the problem. We also saw how learning the structure of a Bayesian

Network is equivalent to the feature selection problem.

• Finally we reviewed literature on structure learning in Bayesian Networks,

investigating the two main paradigms: constraint based methods, and score

& search methods. We saw how several of the constraint based meth-

ods used mutual information measures to rank features and how these ap-

proaches are similar to the information theoretic filter literature.

In the next chapter we present the central result of this thesis, a deriva-

tion of mutual information based feature selection criteria from a clearly defined

loss function, namely the joint likelihood of a discriminative model. We derive

update rules for this loss function which allow us to iteratively maximise the
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joint likelihood by selecting the feature which maximises the conditional mutual

information. In Chapter 5 we use this probabilistic framework to understand

the different approximations and assumptions made by the information theoretic

heuristics we have reviewed in this chapter. In Chapter 6 we link our probabilistic

framework to the problem of Markov Blanket discovery, showing in the process

that some common local structure learning algorithms are actually maximising

the joint likelihood under a flat prior over network structure.



Chapter 4

Deriving a selection criterion

In Chapter 3 we briefly outlined the three main classes of feature selection algo-

rithms: filters, wrappers, and embedded methods. We saw how many of the filter

techniques are heuristic, combining different kinds of correlation terms without

any understanding of the objective function they were optimising. We now recast

the feature selection problem as a constrained optimisation problem in a high

dimensional space, so our task is to find a n-dimensional bit vector θ with at

most k bits set, representing our selected features. We should then choose θ to

optimise some evaluation criterion. There has been much attention given to this

problem of search in high dimensional spaces (see Reunanen [93] for a review of

search strategies in feature selection), and a good search technique is an integral

part of any feature selection algorithm. There has been a similarly large amount

of attention given to the construction of evaluation criteria, but many of these

criteria are based upon heuristics, with little investigation into the underlying

metrics which they are attempting to optimise. We will focus on the derivation

of these evaluation criteria, and leave the question of constructing a search al-

gorithm which best optimises our criteria for future work. In particular we will

derive the optimal evaluation criterion for a particular loss function which we

wish to optimise.

4.1 Minimising a Loss Function

We now formally develop feature selection as the optimisation of a discriminative

model likelihood, following Lasserre et al. [70], and Minka [81] in the construction

of such a model. This derivation of feature selection forms the basis of the rest of

74
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this thesis. In Chapter 5 we will investigate the links between our formal frame-

work based upon the likelihood and the literature of feature selection heuristics

based upon mutual information. In Chapter 6 we will look at what benefits our

likelihood framework gives when we wish to extend these criteria to incorporate

prior information. In Chapter 7 we will use a similar derivation to construct

cost-sensitive feature selection criteria.

4.1.1 Defining the feature selection problem

We assume an underlying i.i.d. process p : X → Y , from which we have a sample

of N observations. Each observation is a pair (x, y), consisting of a d-dimensional

feature vector x = [x1, ..., xd]
T , and a target class y, drawn from the underlying

random variables X = {X1, ..., Xd} and Y . We further assume that p(y|x) is

defined by a subset, X∗, of the features X, while the remaining features are re-

dundant or irrelevant. Our modeling task is therefore two-fold: firstly to identify

the features that play a functional role, and secondly to use these features to

perform predictions.

We adopt a d-dimensional binary vector θ, specifying the selected features: a

1 indicates the feature is selected, and a 0 indicates it is discarded. We use ¬θ
for the negation of θ, i.e. the unselected features. We then define Xθ as the set

of selected features, and X¬θ as the set complement of Xθ, the set of unselected

features. Therefore X = Xθ ∪X¬θ, as Xθ and X¬θ form a partition. We use xθ

for an observation of the selected features Xθ, and similarly for x¬θ. We define

p(y|x,θ) as p(y|xθ), and use the latter when specifically talking about feature

selection. As mentioned, we assume the process p is defined by a subset of the

features, so for some unknown optimal vector θ∗, we have that p(y|x) = p(y|xθ∗).

We then formally defineX∗ as the minimal feature set s.t. ∀ x, y p(y|xθ∗) = p(y|x)
and use θ∗ as the vector indicating this feature set. The feature selection problem

is to identify this vector. We define τ as the other model parameters involved in

the generation of class labels, and λ as the generative parameters which create the

observations x. Each of these model parameters, λ, τ,θ, has an associated prior

probability distribution, p(λ), p(τ,θ), which represents our belief a priori in each

particular value of the parameters. Note that τ and θ are jointly distributed, as

the feature set influences the classification model parameters.
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Figure 4.1: The graphical model for the likelihood specified in Equation (4.1).

4.1.2 A discriminative model for feature selection

We approximate the true distribution p with a hypothetical model q, with sep-

arate parameters for the feature selection, θ, and for classification, τ . Following

Minka [81] and Lasserre et al. [70], in the construction of a discriminative model,

our joint likelihood is

L(D,θ, τ, λ) = p(θ, τ)p(λ)
N∏
i=1

q(yi|xi,θ, τ)q(xi|λ). (4.1)

This is the joint likelihood for the graphical model specified in Figure 4.1. In dis-

criminative models we wish to maximise our classification performance, therefore

we maximize L with respect to θ (our feature selection parameters) and τ (our

model parameters). We therefore ignore the generative parameters λ as they do

not directly influence the classification performance. Excluding the generative

terms gives

L(D,θ, τ, λ) ∝ p(θ, τ)
N∏
i=1

q(yi|xi,θ, τ). (4.2)

We wish to find the Maximum a Posteriori (MAP) solution, the mode of the

distribution L, with respect to the parameters {θ, τ}. This means we will find

a single feature set which maximises our likelihood. We leave a fully Bayesian

treatment of the feature selection problem, where we calculate a probability dis-

tribution over possible feature sets, to future work.

We choose to work with the scaled negative log-likelihood, −�, converting

our maximization problem into a minimization problem, without changing the

position of the optima. This gives

−� = − 1

N

( N∑
i=1

log q(yi|xi,θ, τ) + log p(θ, τ)

)
(4.3)
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which is the function we will minimize with respect to {θ, τ}; the scaling term is

to simplify exposition later.

We wish to decompose this log-likelihood to extract terms directly related to

feature selection and to classification performance. This will allow us to express

the feature selection problem directly and to find what functions maximise the

likelihood of our model. We first compare our predictive model against the true

distribution of p(yi|xi), and so we introduce the ratio p(yi|xi)
p(yi|xi)

into the logarithm.

This is the probability of the correct class given all the data, without any feature

selection. As this ratio is unity it does not change the value of the log-likelihood,

nor the positions of its optima. We can then expand the resulting logarithm to

give several terms,

−� = − 1

N

( N∑
i=1

log
q(yi|xi,θ, τ)

p(yi|xi)
+

N∑
i=1

log p(yi|xi) + log p(θ, τ)

)
. (4.4)

These terms are: the log-likelihood ratio between the true model and our predic-

tive model, the log-likelihood of the true model, and the prior term. The first

term is small when our predictive model is a good approximation to the true

distribution. We can see that the middle term is a finite sample approximation

to the conditional entropy H(Y |X) as follows,

H(Y |X) = −
∑

x∈X,y∈Y
p(x, y) log p(y|x) ≈ − 1

N

N∑
i=1

log p(yi|xi). (4.5)

This represents the total amount of uncertainty there is about the class label

given the data. The conditional entropy is large when the features we have do

not constrain the class label well, i.e. it is hard to accurately predict the label

from the features. The conditional entropy is the log-likelihood of the true model

when taking the limit of data points, and thus provides a lower bound on our

performance, as our model cannot perform better than the data allows.

We are concerned with separating out the influence of feature selection and

classification in our model, and thus introduce an extra ratio p(yi|xi,θ)
p(yi|xi,θ)

into the

first term. This is the probability of the correct class given the features we have

selected with θ, and thus represents how useful a set of features we have selected.
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We can then further expand the first logarithm as follows,

−� = − 1

N

( N∑
i=1

log
q(yi|xi,θ, τ)

p(yi|xi,θ)
+

N∑
i=1

log
p(yi|xi,θ)

p(yi|xi)

+
N∑
i=1

log p(yi|xi) + log p(θ, τ)

)
. (4.6)

We then bring the minus sign inside the brackets, and flip the ratios inside the

logarithms, which gives

−� =
1

N

( N∑
i=1

log
p(yi|xi,θ)

q(yi|xi,θ, τ)
+

N∑
i=1

log
p(yi|xi)

p(yi|xi,θ)

−
N∑
i=1

log p(yi|xi)− log p(θ, τ)

)
. (4.7)

As before the last two terms are the log likelihood of the true model and the

prior term. We have now separated out the first log likelihood ratio into two

terms. The first term is the log ratio between our predictive model and the true

distribution of the labels given our selected subset of features. This represents

how well our model fits the data given the current set of features. When the ratio

is 1, the log ratio is 0 and our model has the best possible fit given the features

selected. The second term is the log ratio between the true distribution given

the selected features, and the true distribution of the labels given all the data.

This measures the quality of the selected feature set θ, based on how close the

conditional distribution of y is to the one conditioned on all the data. We can see

that this term is a finite sample approximation to the expected KL-Divergence

between p(y|x) and p(y|x,θ) as follows

Ex,y{p(y|x)||p(y|x,θ)} =
∑

x∈X,y∈Y
p(x, y) log

p(y|x)
p(y|x,θ) ≈ 1

N

N∑
i=1

log
p(yi|xi)

p(yi|xi,θ)
.

(4.8)

This KL-Divergence has appeared before in the feature selection literature. Koller

and Sahami [63] introduce this divergence as a sensible objective for a feature se-

lection algorithm to minimise. With our expansion we show it to be a direct

consequence of optimising a discriminative model likelihood, though their ap-

proach ignores the prior over the features. As x = {xθ,x¬θ}, we can further



4.1. MINIMISING A LOSS FUNCTION 79

develop this term:

ΔKS = Ex,y{p(y|xθ,x¬θ)||p(y|xθ)}

=
∑
x

p(x)
∑
y

p(y|x) log p(y|xθ,x¬θ)
p(y|xθ)

=
∑
x,y

p(x, y) log
p(y|xθ,x¬θ)
p(y|xθ)

p(x¬θ|xθ)

p(x¬θ|xθ)

=
∑
x,y

p(x, y) log
p(x¬θ, y|xθ)

p(x¬θ|xθ)p(y|xθ)

= I(X¬θ;Y |Xθ). (4.9)

This is the conditional mutual information between the class label and the re-

maining features, given the selected features. We can now write the negative

log-likelihood as the sum of information theoretic quantities plus the prior over

{θ, τ},

−� ≈ Ex,y

{
log

p(yi|xi,θ)

q(yi|xi,θ, τ)

}
+I(X¬θ;Y |Xθ)+H(Y |X)− 1

N
log p(θ, τ). (4.10)

Assuming for the moment that we have the optimal feature set or a superset

thereof (i.e. X∗ ⊆ Xθ) then p(y|x,θ) = p(y|x). Then as the expectation in the

first term is over p(y,x), the first term can be seen as a finite sample approxima-

tion to the expected KL-Divergence over p(x) representing how well the predictive

model fits the true distribution, given a superset of the optimal feature set.

The first term is a measure of the difference between the predictive model q,

and the true distribution p given the selected features. When a superset of the

optimal feature set has been found, it becomes the KL-Divergence between p and

q. The second term is I(X¬θ;Y |Xθ), the conditional mutual information between

the class label and the unselected features, given the selected features. The size of

this term depends solely on the choice of features, and will decrease as the selected

feature set Xθ explains more about Y , until eventually becoming zero when the

remaining features X¬θ contain no additional information about Y in the context

of Xθ. Note that due to the chain rule, I(AB;Y ) = I(A;Y ) + I(B;Y |A), and
X = Xθ ∪X¬θ,

I(X;Y ) = I(Xθ;Y ) + I(X¬θ;Y |Xθ). (4.11)

Since I(X;Y ) is constant, minimizing I(X¬θ;Y |Xθ) is equivalent to maximizing



80 CHAPTER 4. DERIVING A SELECTION CRITERION

I(Xθ;Y ), which is the goal of many mutual information based filter algorithms.

The third term in Eq (4.10) is H(Y |X), the conditional entropy of the labels

given all features ; this is an irreducible constant, dependent only on the dataset

D. As mentioned previously this term represents the quality of the data, and

how predictive X is of Y . When this value is small the data constrains the choice

of Y , and thus it has a low Bayes rate, whereas when this value is large the data

does not constrain the choice of Y , and the Bayes rate is higher.

This expansion makes explicit the effect of the feature selection parameters

θ, separating them from the effect of the parameters τ in the model that uses

those features. If we somehow had the optimal feature subset θ∗, which perfectly

captured the underlying process p, then I(X¬θ;Y |Xθ) would be zero. The re-

maining (reducible) error is then down to the KL divergence p||q, expressing how

well the predictive model q can make use of the provided features. Of course,

different models q will have different predictive ability: a good feature subset will

not necessarily be put to good use if the model is too simple to express the under-

lying function. This perspective was also considered by Tsamardinos and Aliferis

[107], and earlier by Kohavi and John [62] — the above results place these in

the context of a precise objective function, the joint likelihood of a discriminative

model.

We now make an assumption made implicitly by all filter methods, that model

fitting can be separated from the feature selection process. For completeness we

formalise this assumption as:

Definition 8. Filter assumption

Given an objective function for a classifier, we can address the problems of op-

timizing the feature set and optimizing the classifier in two stages: first picking

good features, then building the classifier to use them.

In our framework we make this assumption explicit by specifying that the

prior p(θ, τ) factorizes into p(θ)p(τ), thus decoupling the model fitting from the

feature selection. We note that τ is independent of the second term in our expan-

sion, and by factorising the prior we can select features before fitting the model.

This assumes that our model q will fit the distribution p(y|x,θ) and that it can

exploit all information given in the feature set. We therefore can optimise the

feature selection first, as with enough data our model will fit the true distribution

p(y|x,θ) optimally, and the first ratio in Equation (4.10) will become zero. This
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is a valid assumption if our model q is a consistent estimator of p, as with in-

creasing N it will more closely approximate the true distribution. In essence this

assumption means the classification model is sufficiently complex to adapt to any

feature set, without making additional limiting assumptions about the distribu-

tion. Whereas the filter criteria literature makes the filter assumption implicitly,

the formalism we have presented has made it explicit. In filters, to maximize the

likelihood of the feature set we are only concerned with how p(y|x,θ) approx-

imates p(y|x,θ∗), so we can now specify the optimization problem that defines

the feature selection task for the model in Equation (4.1) as,

θ∗ = argmin
θ

(
I(X¬θ;Y |Xθ)− 1

N
log p(θ)

)
. (4.12)

This optimisation problem relies upon the prior to ensure there is a unique global

optimum, as with a flat prior any superset of an optimal feature set is also optimal.

In the next section we will tighten our definition of the feature selection task to

remove this problem.

We note that in contrast to filter algorithms, wrapper and embedded ap-

proaches optimise jointly over the first two terms in Equation (4.10), by fitting

the classification model together with the feature selection.

We now turn to the problem of how to optimise the parameter θ, i.e. how do

we choose a feature. We show how the commonly used simple greedy searches are

iterative maximisers of the likelihood, and under what conditions such a search

returns the optimal solution.

4.1.3 Optimizing the feature selection parameters

Under the filter assumption in Definition 8, Equation (4.12) specifies the optimal

feature set, in the sense of maximising the joint likelihood. However there may of

course be multiple global optima giving multiple optimal feature sets, in addition

to the trivial optima of selecting all features. In fact, due to the nature of the

mutual information, any feature set which contains the optimal feature set will

be a global optima of the likelihood. As we wish to perform feature selection,

we express a preference for the smallest such feature set which maximises the

likelihood.

With this in mind, we can introduce a minimality constraint on the size of
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the feature set, and define our problem:

θ∗ = argmin
θ′

{
|θ′| : θ′ = argmin

θ

(
I(X¬θ;Y |Xθ)− 1

N
log p(θ)

)}
. (4.13)

This is the smallest feature setXθ, such that the mutual information I(X¬θ;Y |Xθ)

plus the prior is minimal, and thus the joint likelihood is maximal. It should be

remembered that the likelihood is only our proxy for classification error, and the

minimal feature set in terms of classification could be smaller than that which

optimises likelihood.

A common heuristic approach is a sequential search considering features one-

by-one for addition/removal; this is used for example in Markov Blanket learning

algorithms such as IAMB [108] (we will return to the IAMB algorithm in Chap-

ter 6). We will now demonstrate that this sequential search heuristic is in fact

equivalent to a greedy iterative optimisation of Equation (4.13). First we derive

the appropriate update rules for a iterative optimisation of Equation (4.13) and

then in Section 5.1 we show how different assumptions coupled with these greedy

update rules generates many of the different criteria in the literature.

We first introduce extra notation, θt and θt+1, denoting the selected feature

set at timesteps t and t+1. We use J t to denote our objective function (Equation

4.12) at the timestep t. We define a simple greedy sequential search, so only one

feature is added/removed at each timestep, so there is exactly one bit different

between θt and θt+1. The flipped bit we denote as θk.

We define a greedy forward step as the selection of the feature, Xk, which

most improves our selected feature set θt. Therefore:

X∗
k = argmax

Xk∈X¬θt

(
Jt − Jt+1

)

Xθt+1 ← Xθt ∪X∗
k

X¬θt+1 ← X¬θt \X∗
k

We now derive the update for a forward search which optimises the likelihood.

Theorem 1. The forward step that optimizes Eq (4.12) at timestep t+ 1 from

timestep t is to add the feature,

X∗
k = argmax

Xk∈X¬θt

(
I(Xk;Y |Xθt) +

1

N
log

p(θt+1)

p(θt)

)
. (4.14)
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Proof. We wish to minimize Jt+1 from Jt. This is equivalent to maximizing the

difference (Jt − Jt+1) by selecting the feature Xk. The objective at an arbitrary

timestep t is:

Jt = I(X¬θt ;Y |Xθt)− 1

N
log p(θt). (4.15)

and at timestep t+ 1 is:

Jt+1 = I(X¬θt+1 ;Y |Xθt+1)− 1

N
log p(θt+1) (4.16)

We wish to add the feature Xk that minimizes Jt+1, and thus maximizes the

difference Jt − Jt+1,

Jt − Jt+1 = I(X¬θt ;Y |Xθt)− 1

N
log p(θt)− I(X¬θt+1 ;Y |Xθt+1) +

1

N
log p(θt+1).

(4.17)

After applying the chain rule of mutual information we arrive at:

X∗
k = argmax

Xk∈X¬θt

(
Jt − Jt+1

)

= argmax
Xk∈X¬θt

(
I(Xk;Y |Xθt) +

1

N
log

p(θt+1)

p(θt)

)
.

Thus the feature which minimises Jt+1 from Jt is the feature

X∗
k = argmax

Xk∈X¬θt

(
I(Xk;Y |Xθt) +

1

N
log

p(θt+1)

p(θt)

)
. (4.18)

A subtle (but important) implementation point for this selection heuristic is that

it should not add another feature if

∀Xk, I(Xk;Y |Xθ) +
1

N
log

p(θt+1)

p(θt)
≤ 0. (4.19)

This ensures we will not unnecessarily increase the size of the feature set.

We define a greedy backwards step along similar lines. We remove the feature
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Xk which minimises the difference between J t and J t+1. Therefore:

X∗
k = argmin

Xk∈X¬θt

(
Jt − Jt+1

)

Xθt+1 ← Xθt \X∗
k

X¬θt+1 ← X¬θt ∪X∗
k

We now derive the update for a backward search which optimises the likelihood.

Theorem 2. The backward step that optimizes (4.12) at timestep t+ 1 from

timestep t is to remove the feature,

X∗
k = argmin

Xk∈Xθt

(
I(Xk;Y |Xθt \Xk) +

1

N
log

p(θt+1)

p(θt)

)
. (4.20)

Proof. We wish to keep Jt+1 ≈ Jt. This is equivalent to minimising the difference

(Jt − Jt+1, by removing the feature Xk. As before our objective at an arbitrary

timestep t is:

Jt = I(X¬θt ;Y |Xθt)− 1

N
log p(θt). (4.21)

and at timestep t+ 1 is:

Jt+1 = I(X¬θt+1 ;Y |Xθt+1)− 1

N
log p(θt+1) (4.22)

We wish to remove the feature Xk that maximises Jt+1, and thus minimises the

difference Jt − Jt+1,

X∗
k = argmin

Xk∈Xθt

(
Jt − Jt+1

)

= argmin
Xk∈Xθt

(
I(Xk;Y |Xθt \Xk) +

1

N
log

p(θt+1)

p(θt)

)
.

Thus the feature which minimises Jt+1 from Jt is the feature

X∗
k = argmin

Xk∈Xθt

(
I(Xk;Y |Xθt \Xk) +

1

N
log

p(θt+1)

p(θt)

)
. (4.23)

To strictly achieve our optimization goal, a backward step should only remove a
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feature if

I(Xk;Y |{Xθt\Xk}) + 1

N
log

p(θt+1)

p(θt)
≤ 0. (4.24)

With an uninformative prior p(θ) ∝ 1, the prior ratio in both of the updates

cancels, and we recover the maximum likelihood estimate of the optimal feature

set, with the forward iterative minimization update becoming

X∗
k = argmax

Xk∈X¬θt

I(Xk;Y |Xθt). (4.25)

The prior ratio similarly disappears from the backward iterative update, resulting

in

X∗
k = argmin

Xk∈Xθt

I(Xk;Y |Xθt \Xk). (4.26)

These two updates look very familiar in the context of the different criteria we

reviewed in the previous chapter. The next chapter explores the links between

optimising the model likelihood and the information theoretic feature selection

literature, showing many common techniques to be approximate maximisers of

the model likelihood. We return to the full model including priors over the feature

selection parameters in Chapter 6.

4.2 Chapter Summary

In this chapter we approached the problem of feature selection from a theoretical

perspective. We asked two questions: what do we want from a feature selection

algorithm, and how do we measure the performance? We answered these ques-

tions by turning to the statistical concept of likelihood, deciding that maximising

the joint likelihood of a discriminative model would be the target of our system,

rather than trying to minimise the error rate, or maximise the information held

in our feature set.

We showed that choosing to maximise the likelihood implies a particular fea-

ture selection criterion, namely the conditional mutual information between the

unselected features and the class, conditioned on the selected features. Max-

imising this quantity maximises the joint likelihood of our model. This term is

penalised by a prior term which allows the incorporation of domain knowledge

into the feature selection process, a topic we return to in Chapter 6. We then con-

structed hillclimbers on the likelihood, which iteratively maximise it by adding
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or removing features. We now take the insights from our probabilistic model

and apply them to the literature surrounding information theoretic feature selec-

tion, linking our iterative maximisers of the likelihood to feature selection criteria

found in the literature.



Chapter 5

Unifying information theoretic

filters

In the previous chapter we derived an information theoretic feature selection

criterion directly from our choice of loss function (the joint likelihood). In this

chapter we investigate how our derived criterion links to the existing literature on

information theoretic feature selection which we looked at in Chapter 3. These

algorithms, referred to collectively as information theoretic filters, have proven

popular over the past 20 years as the mutual information provides a strong link

to the Bayes error of a classification problem. A feature set which has high

mutual information with the class label, is a feature set with a low conditional

entropy H(Y |X), which forms an upper bound on the Bayes error. Therefore

maximising the mutual information, minimises the conditional entropy, which in

turn minimises an upper bound on the Bayes error (see Section 2.3.2). In light

of the derivation from the previous chapter we can now see that by using the

mutual information they are in fact optimising a discriminative model likelihood.

We use this viewpoint to unify these information theoretic criteria, and expose

the implicit assumptions they make about the underlying data. We show how

Equation (4.25) can be seen as a root criterion from which all others are derived

by making different assumptions about the underlying distribution p.

5.1 Retrofitting Successful Heuristics

In the previous chapter, starting from a clearly defined discriminative model, we

derived a greedy optimization process which maximises the joint likelihood of

87
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that model by assessing features based on a simple scoring criterion on the utility

of including a feature Xk ∈ X¬θ. We now consider how we can relate various

criteria which have appeared in the literature to our framework. None of these

criteria include the prior term, so we assume a flat prior with p(θ) ∝ 1, which

gives the maximum likelihood updates in Equations (4.25) and (4.26). We will

consider the use of priors with these criteria in next Chapter. From the previous

chapter we note that the ML scoring criterion for a feature Xk is,

Jcmi(Xk) = I(Xk;Y |S), (5.1)

where cmi stands for conditional mutual information, and for notational brevity

we now use S = Xθ for the currently selected set. We wish to investigate how

Equation (5.1) relates to existing heuristics in the literature, such as the MIFS cri-

terion we discussed in Chapter 3? Repeating the definition of the MIFS criterion

for clarity,

Jmifs(Xk) = I(Xk;Y )− β
∑
Xj∈S

I(Xk;Xj). (5.2)

We can see that we first need to rearrange Equation (5.1) into the form of a simple

relevancy term between Xk and Y , plus some additional terms, before we can

compare it to MIFS. Using the identity I(A;B|C)−I(A;B) = I(A;C|B)−I(A;C)

(a variant of the chain rule of mutual information), we can re-express Equation

(5.1) as,

Jcmi(Xk) = I(Xk;Y |S) = I(Xk;Y )− I(Xk;S) + I(Xk;S|Y ). (5.3)

It is interesting to see terms in this expression corresponding to the concepts

of “relevancy” and “redundancy”, i.e. I(Xk;Y ) and I(Xk;S). The score will be

increased if the relevancy of Xk is large and the redundancy with existing features

is small. This is in accordance with a common view in the feature selection

literature, observing that we wish to avoid redundant variables. However, we

can also see an important additional term I(Xk;S|Y ), which is not traditionally

accounted for in the feature selection literature — we call this the conditional

redundancy (this notion was first explored by Brown [12]). This term has the

opposite sign to the redundancy I(Xk;S), hence Jcmi will be increased when this

is large, i.e. a strong class-conditional dependence of Xk with the existing set

S. Thus, we come to the important conclusion that the inclusion of correlated
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features can be useful, provided the correlation within classes is stronger than the

overall correlation. We note that this is a similar observation to that of Guyon

[50], that “correlation does not imply redundancy” — Equation (5.3) embodies

this statement in information theoretic terms.

We present a graphical demonstration of these properties in Figure 5.1 (based

upon an example from Guyon [50]). We plot the two features X1 and X2 against

each other, and denote the class by either a red circle or a blue star. Here we can

see how the class conditional information is useful, by rewriting I(X1;X2|Y ) as

follows:

I(X1;X2|Y ) =
∑
y∈Y

p(y)I(X1;X2|Y = y). (5.4)

Individually the features are irrelevant, as I(X1;Y ) ≈ I(X2;Y ) ≈ 0, as the

feature has equal numbers of positive and negative classes for each value. The

redundancy term, I(X1;X2) is similarly small as for each value of X1 there are

both large and small values of X2. However when we break down the class-

conditional term as in Equation (5.4), we can see that I(X1;X2|Y ) ≈ 1. These

values are approximate as this is calculated on a continuous random variable

rather than the discrete random variables considered throughout the rest of this

thesis. We would say that X1 and X2 are complementary variables, as they

combine to improve performance beyond the sum of their parts.

The sum of the last two terms in Equation (5.3) represents the three-way

interaction between the existing feature set S, the target Y , and the candidate

feature Xk being considered for inclusion in S. This is known as the Interac-

tion Information [78], I({X, Y, Z}), which measures dependencies within a set of

variables. To further understand this, we can note the following property:

I(XkS;Y ) = I(S;Y ) + I(Xk;Y |S)
= I(S;Y ) + I(Xk;Y )− I(Xk;S) + I(Xk;S|Y ). (5.5)

We see that if I(Xk;S) > I(Xk;S|Y ), then the total utility when including Xk,

that is I(XkS;Y ), is less than the sum of the individual relevancies I(S;Y ) +

I(Xk;Y ). This can be interpreted as Xk having unnecessary duplicated informa-

tion, which means the total information is less than the sum of the parts, hence we

call this a negative interaction. In the opposite case, when I(Xk;S) < I(Xk;S|Y ),

then Xk and S combine well and provide more information together than by the
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(a) Scatter plot of X1 v X2, indi-
vidually I(X1;Y ) ≈ I(X2;Y ) ≈ 0,
yet I(X1X2;Y ) = 1

(b) Scatter plot of X1 v X2 when
Y = 1, I(X1;X2|y = 1) ≈ 1

(c) Scatter plot of X1 v X2 when
Y = 2, I(X1;X2|y = 2) ≈ 1

Figure 5.1: Figure 5.1a shows the scatter plot between X1 and X2. Figure 5.1b
shows the scatter plot between X1 and X2 when Y = 1. Figure 5.1c shows the
scatter plot between X1 and X2 when Y = 2.

sum of their parts, I(S;Y ), and I(Xk;Y ), hence we call this a positive interaction.

The important point to take away from this expression is that the terms are

in a trade-off — we do not require a feature with low redundancy for its own

sake, but instead require a feature that best trades off the three terms so as to

maximise the score overall. Much like the bias-variance dilemma [35], attempting

to decrease one term is likely to increase another.

We will investigate what assumptions about the underlying distribution p(x, y)

are sufficient to derive MIFS (Equation 5.2) from the optimal maximum likelihood

criterion (Equation 5.1). We begin by writing the latter two terms of Equation

(5.3) as entropies:

Jcmi(Xk) =I(Xk;Y )

−H(S) +H(S|Xk)

+H(S|Y )−H(S|XkY ). (5.6)
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To further develop this, we require an assumption.

Assumption 1: For all unselected features Xk ∈ X¬θ,

p(xθ|xk) =
∏
j∈S

p(xj|xk) (5.7)

p(xθ|xky) =
∏
j∈S

p(xj|xky). (5.8)

This states that the selected features Xθ are independent and class-conditionally

independent given the unselected feature Xk under consideration.

Using this, Equation (5.6) becomes,

J ′
cmi(Xk) = I(Xk;Y )

−H(S) +
∑
j∈S

H(Xj|Xk)

+H(S|Y )−
∑
j∈S

H(Xj|XkY ). (5.9)

where the prime on J indicates we are making assumptions on the distribu-

tion. Now, if we introduce
∑

j∈S H(Xj) −
∑

j∈S H(Xj), and
∑

j∈S H(Xj|Y ) −∑
j∈S H(Xj|Y ), we recover mutual information terms, between the candidate fea-

ture and each member of the set S, plus some additional terms,

J ′
cmi(Xk) = I(Xk;Y )

−
∑
j∈S

I(Xj;Xk) +
∑
j∈S

H(Xj)−H(S)

+
∑
j∈S

I(Xj;Xk|Y ) +
∑
j∈S

H(Xj|Y )−H(S|Y ). (5.10)

Several of the terms in (5.10) are constant with respect to Xk — therefore re-

moving them will have no effect on the choice of feature as our goal is to find the

highest scoring feature not the score itself. Removing these terms, we have an

equivalent criterion,

J ′
cmi(Xk) = I(Xk;Y )−

∑
j∈S

I(Xj;Xk) +
∑
j∈S

I(Xj;Xk|Y ). (5.11)
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This has in fact already appeared in the literature as a filter criterion, orig-

inally proposed by Lin et al. [74], as Conditional Infomax Feature Extraction

(CIFE), though it has been repeatedly rediscovered by other authors [36, 48]. It

is particularly interesting as it represents a sort of ‘root’ criterion, from which

several others can be derived. For example, the link to MIFS can be seen with

one further assumption, that the features are pairwise class-conditionally inde-

pendent.

Assumption 2: For all features i, j,

p(xixj|y) = p(xi|y)p(xj|y). (5.12)

This states that the features are pairwise class-conditionally independent.

With this assumption, the term
∑

I(Xj;Xk|Y ) will be zero, and Equation (5.11)

becomes Equation (5.2), the MIFS criterion, with β = 1. The β parameter in

MIFS can be interpreted as encoding a strength of belief in another assumption,

that of unconditional independence.

Assumption 3: For all features i, j,

p(xixj) = p(xi)p(xj). (5.13)

This states that the features are pairwise independent.

A β close to zero implies very strong belief in the independence statement, indi-

cating that any measured association I(Xj;Xk) is in fact spurious, possibly due

to noise in the data. A β value closer to 1 implies a lesser belief, that any mea-

sured dependency I(Xj;Xk) should be incorporated into the feature score exactly

as observed. Since the MIM criterion is produced by setting β = 0, we can see

that MIM also adopts Assumption 3. The same line of reasoning can be applied

to a very similar (and very popular) criterion proposed by Peng et al. [86], the

Minimum-Redundancy Maximum-Relevance criterion,

Jmrmr(Xk) = I(Xk;Y )− 1

|S|
∑
j∈S

I(Xk;Xj). (5.14)
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Since mRMR omits the conditional redundancy term entirely, it is implicitly using

Assumption 2. The β coefficient has been set inversely proportional to the size of

the current feature set. If we have a large set S, then β will be extremely small.

The interpretation is then that as the set S grows, mRMR adopts a stronger

belief in Assumption 3. In the original paper, [86, section 2.3], it is claimed that

mRMR is a first order approximation to Equation (5.1). By making explicit the

intrinsic assumptions of the criterion we have clearly illustrated that this claim

is incorrect as it does not include a conditional redundancy term, and in fact the

mRMR criterion does not allow for any positive interactions between features.

The relation of the MIFS/mRMR to Equation (5.11) is relatively straight-

forward. It is more challenging to consider how closely other criteria might be

re-expressed in this form. Yang and Moody [110] propose using Joint Mutual

Information (JMI),

Jjmi(Xk) =
∑
j∈S

I(XkXj;Y ). (5.15)

Using some relatively simple manipulations (see Brown [12]) this can be re-written

as,

Jjmi(Xk) = I(Xk;Y )− 1

|S|
∑
j∈S

[
I(Xk;Xj)− I(Xk;Xj|Y )

]
.

The criterion (5.16) returns exactly the same set of features as the JMI criterion

(5.15); however in this form, we can see the relation to our proposed framework.

The JMI criterion, like mRMR, has a stronger belief in the pairwise independence

assumptions as the feature set S grows. Similarities can of course be observed

between JMI, MIFS and mRMR — the differences being the scaling factor and

the conditional term — and their subsequent relation to Equation (5.11). It

is in fact possible to identify numerous criteria from the literature that can all

be re-written into a common form, corresponding to different assumptions made

upon Equation (5.11). A space of potential criteria can be imagined, where we

parametrise criterion (5.11) as:

J ′
cmi = I(Xk;Y )− β

∑
j∈S

I(Xj;Xk) + γ
∑
j∈S

I(Xj;Xk|Y ). (5.16)

Figure 5.2 shows how the criteria we have discussed so far can all be fitted

inside this unit square corresponding to β/γ parameters. MIFS sits on the left
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hand axis of the square — with γ = 0 and β ∈ [0, 1]. The MIM criterion, Equa-

tion (3.1), which simply assesses each feature individually without any regard of

others, sits at the bottom left, with γ = 0, β = 0. The top right of the square

corresponds to γ = 1, β = 1, which is the CIFE criterion [74], also suggested by

El Akadi et al. [36] and Guo and Nixon [48]. A very similar criterion, using an

assumption to approximate the terms, was proposed by Cheng et al. [20].

The JMI and mRMR criteria are different from CIFE and MIFS in that they

move linearly within the space as the feature set S grows. As the size of the

set S increases they move closer towards the origin and the MIM criterion. The

particularly interesting point about this property is that the relative magnitude

of the relevancy term to the redundancy terms stays approximately constant as

S grows, whereas with MIFS, the redundancy term will in general be |S| times

bigger than the relevancy term. We explore the practical consequences of this in

Section 5.2 where we see it plays an important role in explaining the experimental

results. Any criterion expressible in the unit square has made independence

Assumption 1. In addition, any criteria that sit at points other than β = 1, γ = 1

have adopted varying degrees of belief in Assumptions 2 and 3.

A further interesting point about this square is simply that it is sparsely popu-

lated, an obvious unexplored region is the bottom right, the corner corresponding

to β = 0, γ = 1; though there is no clear intuitive justification for this point, for

completeness in the experimental section we will evaluate it, as the conditional

redundancy or ‘condred’ criterion.

A paper by Brown [12] explores this unit square, though from a different

perspective gained by expanding the multivariate mutual information. In fact

much of this thesis arises from extensive consideration of the results in that

paper, though the approach presented here is quite different. Our probabilistic

perspective, deriving our selection criteria from the joint likelihood of a specific

model allows the precise specification of the underlying assumptions required to

produce different criteria from Equation (5.16). Further (unpublished) work by

Brown [13] has shown that the space of criteria with fixed β and γ is not in general

competitive with the criteria which move through the space, such as mRMR or

JMI.

All the criteria in Figure 5.2 are linear, as they take linear combinations of

the relevance/redundancy terms. One interesting perspective is to look at the

criteria not as points but as paths through this space, mRMR is a line along the
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Figure 5.2: The full space of linear filter criteria, describing several examples from
Table 3.1. Note that all criteria in this space adopt Assumption 1. Additionally,
the γ and β axes represent the criteria belief in Assumptions 2 and 3, respectively.
The left hand axis is where the mRMR and MIFS algorithms sit. The bottom left
corner, MIM, is the assumption of completely independent features, using just
marginal mutual information. Note that some criteria are equivalent at particular
sizes of the current feature set |S|.

β axis, and JMI is a line along β = γ. Once we have understood this property

it is natural to ask can there be other paths through this space. Indeed there

exist other criteria which follow a similar form to these linear criteria, except

they include other operations like minimizations, making them take a non-linear

path.

Fleuret [40] proposed the Conditional Mutual Information Maximization cri-

terion,

Jcmim(Xk) = min
Xj∈S

[
I(Xk;Y |Xj)

]
. (5.17)

This can be re-written,

Jcmim(Xk) = I(Xk;Y )−max
Xj∈S

[
I(Xk;Xj)− I(Xk;Xj|Y )

]
. (5.18)

Again these manipulations are found in Brown [12]. Due to themax operator, the

probabilistic interpretation is less straightforward. It is clear however that CMIM

adopts Assumption 1, since it evaluates only pairwise feature statistics. Vidal-

Naquet and Ullman [109] propose another criterion used in Computer Vision,
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which we refer to as Informative Fragments,

Jif (Xk) = minXj∈S
[
I(XkXj;Y )− I(Xj;Y )

]
. (5.19)

The authors motivate this criterion by noting that it measures the gain of com-

bining a new feature Xk with each existing feature Xj, over simply using Xj by

itself. The Xj with the least ‘gain’ from being paired with Xk is taken as the score

for Xk. Interestingly, using the chain rule I(XkXj;Y ) = I(Xj;Y )+ I(Xk;Y |Xj),

therefore IF is equivalent to CMIM, i.e. Jif (Xk) = Jcmim(Xk), making the same

assumptions. In a similar vein, Jakulin [58] proposed the ICAP criterion,

Jicap(Xk) = I(Xk;Y )−
∑
Xj∈S

max
[
0, {I(Xk;Xj)− I(Xk;Xj|Y )}

]
. (5.20)

Again, this adopts Assumption 1, using the same redundancy and conditional

redundancy terms, yet the exact probabilistic interpretation is unclear. This

criteria is designed to penalise criteria which interact negatively, but does not

select those which interact positively. It is designed for use with classifiers which

make similar assumptions of class conditional independence, such as the Näıve

Bayes classifier.

An interesting class of criteria use a normalisation term on the mutual infor-

mation to offset the inherent bias toward high arity features [34]. An example

of this is Double Input Symmetrical Relevance [79], a modification of the JMI

criterion:

Jdisr(Xk) =
∑
Xj∈S

I(XkXj;Y )

H(XkXjY )
. (5.21)

The inclusion of this normalisation term breaks the strong theoretical link to a

likelihood function, but again for completeness we will include this in our empiri-

cal investigations. While the criteria in the unit square can have their probabilis-

tic assumptions made explicit, the non-linearity in the CMIM, ICAP and DISR

criteria make such an interpretation far more difficult.

5.1.1 Bounding the criteria

There is one more important factor to note about many of these filter criteria,

and that is their relative size compared to the optimal criterion of Equation (5.1).

Using the properties of the mutual information we reviewed in Section 2.3 we can
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upper bound each mutual information term by various different entropies (all

Shannon mutual information terms are lower bound by zero). In particular we

can bound J∗ as follows,

0 ≤ J∗(Xk) = I(Xk;Y |S) ≤ H(Xk|S) ≤ H(Xk). (5.22)

If we consider the CIFE criterion (repeated for clarity),

Jcife(Xk) = I(Xk;Y )−
∑
Xj∈S

I(Xk;Xj) +
∑
Xj∈S

I(Xk;Xj|Y ), (5.23)

we can bound the individual terms separately,

I(Xk;Y ) ≤ H(Xk)∑
Xj∈S

I(Xk;Xj) ≤ |S| ·H(Xk)

∑
Xj∈S

I(Xk;Xj|Y ) ≤ |S| ·H(Xk|Y ) ≤ |S| ·H(Xk). (5.24)

However the entire CIFE criterion is not so well behaved, as it is neither bounded

above by H(Xk) nor bounded below by 0. This is because the redundancy and

conditional redundancy terms are bound by a function of |S|, and so grow in

size compared to the relevancy term. This issue is also apparent in the MIFS

and ICAP criteria, and we will see how it explains many of the differences in

experimental performance.

If we consider the JMI criterion, we can see that the averaging of the redun-

dancy and conditional redundancy terms removes this problem, stopping those

terms from growing as a function of |S|. However the JMI criterion poses another

problem, as it has multiple variants. We presented two versions of this criterion

in Equations (5.15) and (5.16) and stated that they rank features identically.

However we might expect that these different versions would interact in different

ways with the prior term which exists in the derivation. We will return to this

issue when we address informative priors in Chapter 6.

5.1.2 Summary of theoretical findings

In this section we have shown that numerous criteria published over the past two

decades of research can be “retro-fitted” into the framework we have proposed
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— the criteria are approximations to Equation (5.1), each making different as-

sumptions on the underlying distributions. Since in the previous section we saw

that accepting the top ranked feature according to Equation (5.1) provides the

maximum possible increase in the likelihood, we see now that the criteria are

approximate maximisers of the likelihood under an uninformative prior over the

choice of features. Whether or not they indeed provide the maximum increase

at each step will depend on how well the implicit assumptions on the data dis-

tribution match the true distribution. Also, it should be remembered that even

if we used the optimal stepwise criterion, it is not guaranteed to find the global

optimum of the likelihood, since (a) it is a greedy search, and (b) finite data will

mean distributions cannot be accurately modelled. There are a subset of prob-

lems where this greedy search is optimal, namely in Markov Blanket discovery

algorithms, which we return to in Chapter 6. In this case, we have reached the

limit of what a theoretical analysis can tell us about these criteria, and we must

close the remaining ‘gaps’ in our understanding with an experimental study.

5.2 Experimental Study

In this section we empirically evaluate a selection of the criteria in the literature

against one another. Note that we are not pursuing an exhaustive analysis,

attempting to identify the ‘winning’ criterion that provides best performance

overall1 — rather, we primarily observe how the theoretical properties of criteria

relate to the similarity of the returned feature sets. While these properties are

interesting, we of course must acknowledge that classification performance is the

ultimate evaluation of a criterion — hence we also include here classification

results on UCI datasets and in Section 5.3 on the well-known benchmark NIPS

Feature Selection Challenge.

In the following sections, we ask the questions: “how stable is a criterion to

small changes in the training data set?”, “how similar are the criteria to each

other?”, “how do the different criteria behave in small-sample situations?”, and

finally, “what is the relationship between stability and accuracy?”.

To address these questions, we use the 15 datasets detailed in Table 5.1. These

are chosen to have a wide variety of example-feature ratios, and a range of multi-

class problems. The features within each dataset have a variety of characteristics

1In any case, the No Free Lunch Theorem applies [107].
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— some binary/discrete, and some continuous. Continuous features were discre-

tised, using an equal-width strategy into 5 bins, while features already with a

categorical range were left untouched. The ‘ratio’ statistic quoted in the final

column is an indicator of the difficulty of the feature selection for each dataset.

This uses the number of datapoints (N), the median arity of the features (m), and

the number of classes (c) — the ratio quoted in the table for each dataset is N
mc

— hence a smaller value indicates a more challenging feature selection problem.

A key feature of this work is to understand the statistical assumptions on

the data imposed by the feature selection criteria — if our classification model

were to make even more assumptions, this is likely to obscure the experimental

observations relating performance to theoretical properties. For this reason, in the

experiments in this chapter we use a simple nearest neighbour classifier (k = 3),

this is chosen as it makes few (if any) assumptions about the data, and we avoid

the need for parameter tuning. We apply the filter criteria using a simple forward

selection to select a fixed number of features, before being used with the classifier.

The number of features selected varies between the experiments, but is detailed

for each experiment. We will consider the 9 criteria previously studied in our

theoretical analysis for all the experiments. One important criterion which we

cannot use in this study is a direct implementation of Equation (5.1), which we

showed to be the optimal criterion for iteratively maximising the likelihood. This

criterion requires the estimation of an |S| dimensional probability distribution,

which is in general intractable for small and medium sized datasets, and thus we

will not use it for this section of the empirical study. However in Section 5.3 we

will look at two larger datasets, and there we will benchmark the performance of

Equation (5.1), referring to it as the CMI criterion.

5.2.1 How stable are the criteria to small changes in the

data?

The set of features selected by any procedure will of course depend on the data

provided. It is a plausible complaint if the set of returned features varies wildly

with only slight variations in the supplied data. In general we do not wish the

feature set to have high variance, i.e. small changes in the data should have con-

sequently small changes in the selected feature set. This is an issue reminiscent

of the bias-variance dilemma, where the sensitivity of a classifier to its initial
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Data Features Examples Classes Ratio
breast 30 569 2 57
congress 16 435 2 72
heart 13 270 2 34
ionosphere 34 351 2 35
krvskp 36 3196 2 799
landsat 36 6435 6 214
lungcancer 56 32 3 4
parkinsons 22 195 2 20
semeion 256 1593 10 80
sonar 60 208 2 21
soybeansmall 35 47 4 6
spect 22 267 2 67
splice 60 3175 3 265
waveform 40 5000 3 333
wine 13 178 3 12

Table 5.1: Datasets used in experiments. The final column indicates the difficulty
of the data in feature selection, a smaller value indicating a more challenging
problem.

conditions causes high variance responses. However, while the bias-variance de-

composition is well-defined and understood, the corresponding issue for feature

selection, the “stability”, has only recently been studied. The stability of a fea-

ture selection criterion requires a measure to quantify the similarity between two

selected feature sets. This was first discussed by Kalousis et al. [59], who in-

vestigated several measures, with the final recommendation being the Tanimoto

distance between sets. Such set-intersection measures seem appropriate, but have

limitations; for example, if two criteria selected identical feature sets of size 10,

we might be less surprised if we knew the overall pool of features was of size 12,

than if it was size 12,000. Kuncheva [67] presents a consistency index which takes

this into account, based on the hypergeometric distribution with a correction for

the probability of selecting the same feature set at random.

Definition 9. The consistency for two subsets A,B ⊂ X, such that |A| = |B| =
k, and r = |A ∩ B|, where 0 < k < |X| = d, is

C(A,B) =
rd− k2

k(d− k)
. (5.25)
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The consistency takes values in the range [−1,+1], with a positive value in-

dicating similar sets, a zero value indicating a purely random relation, and a

negative value indicating a strong anti-correlation between the features sets.

One problem with the consistency index is that it does not take feature re-

dundancy into account. That is, two procedures could select features which have

different indices, so are identified as “different”, but in fact are so highly corre-

lated that they are effectively identical. A method to deal with this situation

was proposed by Yu et al. [111]. This method constructs a weighted complete

bipartite graph, where the two node sets correspond to two different feature sets,

and weights are assigned to the arcs are the normalized mutual information be-

tween the features at the nodes, also sometimes referred to as the symmetrical

uncertainty. The weight between node i in set A, and node j in set B, is

w(A(i), B(j)) =
I(XA(i);XB(j))

H(XA(i)) +H(XB(j))
. (5.26)

The Hungarian algorithm is then applied to identify the maximum weighted

matching between the two node sets, and the overall similarity between sets A

and B is the final matching cost. This is the information consistency of the two

sets. For more details, we refer the reader to Yu et al. [111].

An ideal consistency metric would include both of these properties, a correc-

tion for random selection and an ability to detect when similar features have been

selected. However we leave the construction of such a metric for future research.

We now compare these two measures on the criteria from the previous sections.

For each dataset, we take a bootstrap sample and select a set of features using

each feature selection criterion. The (information) stability of a single criterion is

quantified as the average pairwise (information) consistency across 50 bootstraps

from the training data.

Figure 5.3 shows Kuncheva’s stability measure on average over 15 datasets,

selecting feature sets of size 10; note that the criteria have been displayed ordered

left-to-right by their median value of stability over the 15 datasets. The marginal

mutual information, MIM, is as expected the most stable, given that it has the

lowest dimensional distribution to estimate. The next most stable is JMI which

includes the relevancy/redundancy terms, but averages over the current feature

set; this averaging process might therefore be interpreted empirically as a form

of ‘smoothing’, enabling the criteria overall to be resistant to poor estimation of
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Figure 5.3: Kuncheva’s Stability Index [67] across 15 datasets. The box indi-
cates the upper/lower quartiles, the horizontal line within each shows the median
value, while the dotted crossbars indicate the maximum/minimum values. For
convenience of interpretation, criteria on the x-axis are ordered by their median
value.

probability distributions. It can be noted that the far right of Figure 5.3 consists

of the MIFS, ICAP and CIFE criteria, all of which do not attempt to average the

redundancy terms.

Figure 5.4 shows the same datasets, but instead the information stability

is computed; as mentioned, this should take into account the fact that some

features are highly correlated. Interestingly, the two box-plots show broadly

similar results. MIM is the most stable, and CIFE is the least stable, though here

we see that JMI, DISR, and mRMR are actually more stable than Kuncheva’s

stability index can reflect.

5.2.2 How similar are the criteria?

Two criteria can be directly compared with the same methodology: by measuring

the consistency and information consistency between selected feature subsets on

a common set of data. We calculate the mean consistencies between two feature

sets of size 10, repeatedly selected over 50 bootstraps from the original data. This

is then arranged in a similarity matrix, and we use classical multi-dimensional

scaling [26] to visualise this as a 2D map, shown in Figures 5.5a and 5.5b. Note
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Figure 5.4: Yu et al.’s Information Stability Index [111] across 15 datasets. For
comparison, criteria on the x-axis are ordered identically to Figure 5.3. A similar
general picture emerges to that using Kuncheva’s measure, though the informa-
tion stability index is able to take feature redundancy into account, showing that
some criteria are slightly more stable than expected.

again that while the indices may return different absolute values (one is a nor-

malized mean of a hypergeometric distribution and the other is a pairwise sum

of mutual information terms) they show very similar relative ‘distances’ between

criteria.

Both diagrams show a cluster of several criteria, and 4 clear outliers: MIFS,

CIFE, ICAP and CondRed. The 5 criteria clustering in the upper left of the

space appear to return relatively similar feature sets. The 4 outliers appear

to return quite significantly different feature sets, both from the clustered set,

and from each other. A common characteristic of these 4 outliers is that they

do not scale the redundancy or conditional redundancy information terms. In

these criteria, the upper bound on the redundancy term
∑

j∈S I(Xk;Xj) grows

linearly with the number of selected features, whilst the upper bound on the

relevancy term I(Xk;Y ) remains constant. When this happens the relevancy term

is overwhelmed by the redundancy term and thus the criterion selects features

with minimal redundancy, rather than trading off between the two terms. This

leads to strongly divergent feature sets being selected, which is reflected in the

stability of the criteria. Each of the outliers are different from each other as they

have different combinations of redundancy and conditional redundancy. We will
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(b) Yu et al.’s Information Stability Index.

Figure 5.5: Relations between feature sets generated by different criteria, on av-
erage over 15 datasets. 2D visualisation generated by classical multi-dimensional
scaling.

see this “balance” between relevancy and redundancy emerge as an important

property in the experiments over the next few sections.

5.2.3 How do criteria behave in small-sample situations?

To assess how criteria behave in data poor situations, we vary the number of

datapoints supplied to perform the feature selection. The procedure was to ran-

domly select 140 datapoints, then use the remaining data as a hold-out set. From

this 140, the number provided to each criterion was increased in steps of 10, from

a minimal set of size 20. To allow a reasonable testing set size, we limited this

assessment to only datasets with at least 200 datapoints total; this gives us 11

datasets from the 15, omitting lungcancer, parkinsons, soybeansmall, and wine.

For each dataset we select 10 features and apply the 3-NN classifier, recording

the rank-order of the criteria in terms of their generalisation error. This process

was repeated and averaged over 50 trials, giving the results in Figure 5.6.

To aid interpretation we label MIM with a simple point marker, MIFS, CIFE,

CondRed, and ICAP with a circle, and the remaining criteria (DISR, JMI, mRMR

and CMIM) with a star. The criteria labelled with a star balance the relative

magnitude of the relevancy and redundancy terms, those with a circle do not
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attempt to balance them, and MIM contains no redundancy term. There is a

clear separation between those criteria with a star outperforming those with a

circle, and MIM varying in performance between the two groups as we allow more

training datapoints.

Notice that the highest ranked criteria coincide with those in the cluster at

the top left of Figures 5.5a and 5.5b. We suggest that the relative difference in

performance is due to the same reason noted in Section 5.2.2, that the redundancy

term grows with the size of the selected feature set. In this case, the redundancy

term eventually grows to outweigh the relevancy by a large degree, and the new

features are selected solely on the basis of redundancy, ignoring the relevance,

thus leading to poor classification performance.
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Figure 5.6: Average ranks of criteria in terms of test error, selecting 10 features,
across 11 datasets. Note the clear dominance of criteria which do not allow the
redundancy term to overwhelm the relevancy term (stars) over those that allow
redundancy to grow with the size of the feature set (circles).

Extreme small-sample experiments

In the previous sections we discussed two theoretical properties of information-

based feature selection criteria: whether it balances the relative magnitude of

relevancy against redundancy, and whether it includes a class-conditional redun-

dancy term. Empirically on the UCI datasets, we see that the balancing is far

more important than the inclusion of the conditional redundancy term — for

example, mRMR succeeds in many cases, while MIFS performs poorly. Now, we
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Data Features Examples Classes
Colon 2000 62 2
Leukemia 7070 72 2
Lung 325 73 7
Lymph 4026 96 9
NCI9 9712 60 9

Table 5.2: Datasets from Peng et al. [86], used in small-sample experiments.

consider whether the same property may hold in extreme small-sample situations,

when the number of examples is so low that reliable estimation of distributions

becomes extremely difficult. We use data sourced from Peng et al. [86], detailed

in Table 5.2.

Results are shown in Figure 5.7, selecting 50 features from each dataset and

plotting leave-one-out classification error. It should of course be remembered that

on such small datasets, making just one additional datapoint error can result in

seemingly large changes in accuracy. For example, the difference between the best

and worst criteria on Leukemia was just 3 datapoints. In contrast to the UCI

results, the picture is less clear. On Colon, the criteria all perform similarly; this

is the least complex of all the datasets, having the smallest number of classes with

a (relatively) small number of features. As we move through the datasets with

increasing numbers of features/classes, we see that MIFS, CondRed, CIFE and

ICAP start to break away, performing poorly compared to the others. Again, we

note that these do not attempt to balance relevancy/redundancy. This difference

is clearest on the NCI9 data, the most complex with 9 classes and 9712 features.

However, as we may expect with such high dimensional and challenging problems,

there are some exceptions — the Colon data as mentioned, and also the Lung

data where ICAP/MIFS perform well.

5.2.4 What is the relationship between stability and ac-

curacy?

An important question is whether we can find a good balance between the stability

of a criterion and the classification accuracy. This was considered by Gulgezen

et al. [47], who studied the stability/accuracy trade-off for the mRMR criterion.

In the following, we consider this trade-off in the context of Pareto-optimality,

across the 9 criteria, and the 15 datasets from Table 5.1. Experimental protocol
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Figure 5.7: LOO results on Peng’s datasets: Colon, Lymphoma, Leukemia, Lung,
NCI9.
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was to take 50 bootstraps from the dataset, each time calculating the out-of-

bag error using the 3-NN. The stability measure was Kuncheva’s stability index

calculated from the 50 feature sets, and the accuracy was the mean out-of-bag

accuracy across the 50 bootstraps. The experiments were also repeated using the

Information Stability measure, revealing almost identical results. Results using

Kuncheva’s stability index are shown in Figure 5.8.

The Pareto-optimal set is defined as the set of criteria for which no other

criterion has both a higher accuracy and a higher stability, hence the members

of the Pareto-optimal set are said to be non-dominated [41]. Thus in each of the

graphs in Figure 5.8, criteria that appear further to the top-right of the space

dominate those toward the bottom left — in such a situation there is no reason

to choose those at the bottom left, since they are dominated on both objectives

by other criteria.

A summary (for both stability and information stability) is provided in the

first two columns of Table 5.3, showing the non-dominated rank of the different

criteria. This is computed per dataset as the number of other criteria which

dominate a given criterion, in the Pareto-optimal sense, then averaged over the

15 datasets. We can see that these rankings are similar to the results earlier, with

MIFS, ICAP, CIFE and CondRed performing poorly. We note that JMI, (which

both balances the relevancy and redundancy terms and includes the conditional

redundancy) outperforms all other criteria.

We present the average accuracy ranks across the 50 bootstraps in the third

column of Table 5.3. These are similar to the results from Figure 5.6 but use

a bootstrap of the full dataset, rather than a small sample from it. Following

Demšar [29] we analysed these ranks using a Friedman test to determine which

criteria are statistically significantly different from each other. We then used

a Nemenyi post-hoc test to determine which criteria differed, with statistical

significances at 90%, 95%, and 99% confidences. These give a partial ordering

for the criteria which we present in Figure 5.9, showing a Significant Dominance

Partial Order diagram. Note that this style of diagram encapsulates the same

information as a Critical Difference diagram [29], but allows us to display multiple

levels of statistical significance. A bold line connecting two criteria signifies a

difference at the 99% confidence level, a dashed line at the 95% level, and a

dotted line at the 90% level. Absence of a link signifies that we do not have the

statistical power to determine the difference one way or another. Reading Figure
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Figure 5.8: Stability (y-axes) versus Accuracy (x-axes) over 50 bootstraps for the
final quarter of the UCI datasets. The pareto-optimal rankings are summarised
in Table 5.3.
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Accuracy/Stability(Yu) Accuracy/Stability(Kuncheva) Accuracy
JMI (1.6) JMI (1.5) JMI (2.6)
DISR (2.3) DISR (2.2) mRMR (3.6)
MIM (2.4) MIM (2.3) DISR (3.7)

mRMR (2.5) mRMR (2.5) CMIM (4.5)
CMIM (3.3) CONDRED (3.2) ICAP (5.3)
ICAP (3.6) CMIM (3.4) MIM (5.4)

CONDRED (3.7) ICAP (4.3) CIFE (5.9)
CIFE (4.3) CIFE (4.8) MIFS (6.5)
MIFS (4.5) MIFS (4.9) CONDRED (7.4)

Table 5.3: Column 1: Non-dominated Rank of different criteria for the trade-off
of accuracy/stability. Criteria with a higher rank (closer to 1.0) provide a better
trade-off than those with a lower rank. Column 2: As column 1 but using
Kuncheva’s Stability Index. Column 3: Average ranks for accuracy alone.

5.9, we see that with 99% confidence JMI is significantly superior to CondRed,

and MIFS, but not statistically significantly different from the other criteria. As

we lower our confidence level, more differences appear, for example mRMR and

MIFS are only significantly different at the 90% confidence level.

5.2.5 Summary of empirical findings

From experiments in this section, we conclude that the balance of relevancy and

redundancy terms is extremely important, while the inclusion of a class condi-

tional term seems to matter less. We find that some criteria are inherently more

stable than others, and that the trade-off between accuracy (using a simple k-

NN classifier) and stability of the feature sets differs between criteria. The best

overall trade-off for accuracy/stability was found in the JMI and mRMR criteria.

In the following section we check these findings in the context of two problems

posed for the NIPS Feature Selection Challenge.

5.3 Performance on the NIPS Feature Selection

Challenge

In this section we investigate performance of the criteria on datasets taken from

the NIPS Feature Selection Challenge [49]. We present results using GISETTE (a

handwriting recognition task), and MADELON (an artificially generated dataset).
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Figure 5.9: Significant dominance partial-order diagram. Criteria are placed top
to bottom in the diagram by their rank taken from column 3 of Table 5.3. A link
joining two criteria means a statistically significant difference is observed with
a Nemenyi post-hoc test at the specified confidence level. For example JMI is
significantly superior to MIFS (β = 1) at the 99% confidence level. Note that the
absence of a link does not signify the lack of a statistically significant difference,
but that the Nemenyi test does not have sufficient power (in terms of number of
datasets) to determine the outcome [29]. It is interesting to note that the four
bottom ranked criteria correspond to the corners of the unit square in Figure
5.2; while the top three (JMI/mRMR/DISR) are all very similar, scaling the
redundancy terms by the size of the feature set. The middle ranks belong to
CMIM/ICAP, which are similar in that they use the min/max strategy instead
of a linear combination of terms.
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Data Features Examples (Tr/Val) Classes
GISETTE 5000 6000/1000 2
MADELON 500 2000/600 2

Table 5.4: Datasets from the NIPS challenge, used in experiments.

To apply the mutual information criteria, we estimate the necessary distri-

butions using histogram estimators: features were discretised independently into

10 equal width bins, with bin boundaries determined from training data. After

the feature selection process the original (undiscretised) datasets were used to

classify the validation data. Each criterion was used to generate a ranking for

the top 200 features in each dataset. We show results using the full top 200 for

GISETTE, but only the top 20 for MADELON as after this point all criteria

demonstrated severe overfitting. We use the Balanced Error Rate, for fair com-

parison with previously published work on the NIPS datasets. We accept that

this does not necessarily share the same optima as the classification error (nor

the same maxima of the joint likelihood). We investigate cost-sensitive versions

of the model likelihood in Chapter 7, where we derive criteria which could be

tailored to the Balanced Error Rate (on the training data).

Validation data results are presented in Figure 5.10 (GISETTE) and Figure

5.11 (MADELON). The minimum of the validation error was used to select the

best performing feature set size, the training data alone used to classify the testing

data, and finally test labels were submitted to the challenge website. Test results

are provided in Table 5.5 for GISETTE, and Table 5.6 for MADELON2.

Unlike in Section 5.2, the datasets we use from the NIPS Feature Selection

Challenge have many more datapoints (GISETTE has 6000 training examples,

MADELON has 2000) and thus we can present results using a direct implemen-

tation of Equation (5.1) as a criterion. We refer to this criterion as CMI, as it is

using the conditional mutual information to score features. Unfortunately there

are still estimation errors in this calculation when selecting a large number of

features, even given the large number of datapoints and so the criterion fails to

select features after a certain point, as each feature appears equally irrelevant. In

GISETTE, CMI selected 13 features, and so the top 10 features were used and

one result is shown. In MADELON, CMI selected 7 features and so 7 results are

shown.

2We do not provide classification confidences as we used a nearest neighbour classifier and
thus the AUC is equal to 1− BER.
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Figure 5.10: Validation Error curve using GISETTE.
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Figure 5.11: Validation Error curve using MADELON.
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5.3.1 GISETTE testing data results

In Table 5.5 there are several distinctions between the criteria, the most striking

of which is the failure of MIFS to select an informative feature set. The impor-

tance of balancing the magnitude of the relevancy and the redundancy can be

seen whilst looking at the other criteria in this test. Those criteria which bal-

ance the magnitudes, (CMIM, JMI, & mRMR) perform better than those which

do not (ICAP,CIFE). The DISR criterion forms an outlier here as it performs

poorly when compared to JMI. The only difference between these two criteria

is the normalization in DISR — as such, this is likely the cause of the observed

poor performance, due to the introduction of more variance by estimating the

normalization term H(Xk, Xj, Y ).

We can also see how important the low dimensional approximation is, as even

with 6000 training examples CMI cannot estimate the required joint distribution

to avoid selecting probes, despite being a direct iterative maximisation of the

joint likelihood, under a flat prior, in the limit of datapoints.

Criterion BER AUC Features (%) Probes (%)
MIM 4.18 95.82 4.00 0.00
MIFS 42.00 58.00 4.00 58.50
CIFE 6.85 93.15 2.00 0.00
ICAP 4.17 95.83 1.60 0.00
CMIM 2.86 97.14 2.80 0.00
CMI 8.06 91.94 0.20 20.00
mRMR 2.94 97.06 3.20 0.00
JMI 3.51 96.49 4.00 0.00
DISR 8.03 91.97 4.00 0.00

Winning Challenge Entry 1.35 98.71 18.3 0.0

Table 5.5: NIPS FS Challenge Results: GISETTE.

5.3.2 MADELON testing data results

The MADELON results (Table 5.6) show a particularly interesting point — the

top performers (in terms of BER) are JMI and CIFE. Both these criteria include

the class-conditional redundancy term, but CIFE does not balance the influence

of relevancy against redundancy. In this case, it appears the ‘balancing’ issue,

so important in our previous experiments, appears unimportant — instead, the

presence of the conditional redundancy term is the differentiating factor between
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Criterion BER AUC Features (%) Probes (%)
MIM 10.78 89.22 2.20 0.00
MIFS 46.06 53.94 2.60 92.31
CIFE 9.50 90.50 3.80 0.00
ICAP 11.11 88.89 1.60 0.00
CMIM 11.83 88.17 2.20 0.00
CMI 21.39 78.61 0.80 0.00
mRMR 35.83 64.17 3.40 82.35
JMI 9.50 90.50 3.20 0.00
DISR 9.56 90.44 3.40 0.00

Winning Challenge Entry 7.11 96.95 1.6 0.0

Table 5.6: NIPS FS Challenge Results: MADELON.

criteria (note the poor performance of MIFS/mRMR). This is perhaps not sur-

prising given the nature of the MADELON data, constructed precisely to require

features to be evaluated jointly.

It is interesting to note that the challenge organisers benchmarked a 3-NN

using the optimal feature set, achieving a 10% test error [49]. Many of the

criteria managed to select feature sets which achieved a similar error rate using

a 3-NN, and it is likely that a more sophisticated classifier is required to further

improve performance.

Our experimental results have shown another difference between the criteria,

which was less apparent from our theoretical study. The criteria which imple-

mented scaling, or some other method of balancing the size of the relevancy and

redundancy terms have outperformed all others. The criteria which do not, like

CIFE and MIFS, perform poorly across many datasets. We now integrate our

theoretical view of feature relevancy and redundancy into that of Kohavi and

John’s notions of Strong and Weak Relevance from their landmark 1997 paper

[62].

5.4 An Information Theoretic View of Strong

and Weak Relevance

We reviewed the definitions of relevance and irrelevance given by Kohavi and

John [62] in Section 3.1. These definitions are statements about the conditional

probability distributions of the variables involved. We can re-state the definitions
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of Kohavi and John (hereafter KJ) in terms of mutual information, and see how

they can fit into our likelihood maximisation framework. In the notation below,

notation Xi indicates the ith feature in the overall set X, and notation X\i
indicates the set {X\Xi}, all features except the ith. The definitions of strong

and weak relevance are taken from KJ’s paper, but the corollaries are novel

restatements in information theoretic terms. We also extend the notion of weak

relevance by separating it into two disjoint definitions.

Definition 10. Strongly Relevant Feature [62]

Feature Xi is strongly relevant to Y iff there exists an assignment of values xi,

y, x\i for which p(Xi = xi, X\i = x\i) > 0 and p(Y = y|Xi = xi, X\i = x\i) �=
p(Y = y|X\i = x\i).

Corollary 1. A feature Xi is strongly relevant iff I(Xi;Y |X\i) > 0.

Proof. The KL divergence DKL(p(y|x, z) || p(y|z)) > 0 iff p(y|x, z) �= p(y|z)
for some assignment of values x, y, z. A simple re-application of the manipula-

tions leading to Equation (4.9) demonstrates that the expected KL-divergence

Exz{p(y|x, z)||p(y|z)} is equal to the mutual information I(X;Y |Z). In the def-

inition of strong relevance, if there exists a single assignment of values xi, y,

x\i that satisfies the inequality, then Ex{p(y|xix\i)||p(y|x\i)} > 0 and therefore

I(Xi;Y |X\i) > 0.

Given the framework we have presented, we can note that this strong relevance

comes from a combination of three terms,

I(Xi;Y |X\i) = I(Xi;Y )− I(Xi;X\i) + I(Xi;X\i|Y ). (5.27)

This view of strong relevance demonstrates explicitly that a feature may be indi-

vidually irrelevant (i.e. p(y|xi) = p(y) and thus I(Xi;Y ) = 0), but still strongly

relevant if I(Xi;X\i|Y )− I(Xi;X\i) > 0.

Definition 11. Weakly Relevant Feature [62]

Feature Xi is weakly relevant to Y iff it is not strongly relevant and there exists

a subset Z ⊂ X\i, and an assignment of values xi, y, z for which p(Xi = xi, Z =

z) > 0 such that p(Y = y|Xi = xi, Z = z) �= p(Y = y|Z = z).

Corollary 2. A feature Xi is weakly relevant to Y iff it is not strongly relevant

and I(Xi;Y |Z) > 0 for some Z ⊂ X\i.
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Proof. This follows immediately from the proof for the strong relevance above.

The notion of weak relevance can however be refined further, if we constrain

the subset Z such that it must contain all the strongly relevant features.

Definition 12. Weak Redundancy

Feature Xi is weakly redundant if it is weakly relevant and ∃Z ⊂ X\i such that

I(Xi;Y |{Z, SR}) > 0 where SR is the set of strongly relevant features.

Definition 13. Strong Redundancy

Feature Xi is strongly redundant if it is weakly relevant and ∀Z ⊂ X\i I(Xi;Y |{Z, SR}) =
0 where SR is the set of strongly relevant features.

The optimal subset (i.e. contains the necessary and sufficient features) is

therefore all the strongly relevant and some weakly redundant features. The

optimal subset does not contain any of the strongly redundant or irrelevant fea-

tures. From this perspective the weakly redundant features are those which share

the same data, some of them are necessary to capture all the available informa-

tion but to select all of them would include redundant features. Note that this

coincides with the definition of a Surely Sufficient Feature Subset [50, pg 19].

Another way of seeing this is, of the weakly relevant features, there are those

which duplicate information in SR (the strongly redundant set), and those which

complement information in SR (the weakly redundant set).

It is interesting, and somewhat non-intuitive, that there can be cases where

there are no strongly relevant features, but all are weakly relevant. This will

occur for example in a dataset where all features have exact duplicates: we have

2M features and ∀i, XM+i = Xi. In this case, for any Xk (such that k < M)

we will have I(Xk;Y |X\i) = 0 since its duplicate feature XM+k will carry the

same information. In this case, for any feature Xk (such that k < M) that is

strongly relevant in the dataset {X1, ..., XM}, it is weakly relevant in the dataset

{X1, ..., X2M}.
This issue can be dealt with by refining our definition of relevance with respect

to a subset of the full feature space. A particular subset about which we have

some information is the currently selected set S. We can relate our framework to

KJ’s definitions in this context. Following KJ’s formulations,

Definition 14. Relevance with respect to the current set S.

Feature Xi is relevant to Y with respect to S iff there exists an assignment of
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values xi, y, s for which p(Xi = xi, S = s) > 0 and p(Y = y|Xi = xi, S = s) �=
p(Y = y|S = s).

Corollary 3. Feature Xi is relevant to Y with respect to S, iff I(Xi;Y |S) > 0.

A feature that is relevant with respect to S is either strongly or weakly relevant

(in the KJ sense) but it is not possible to determine in which class it lies, as we

have not conditioned on X\i. Notice that the definition coincides exactly with the

forward selection heuristic (Equation 4.14) when using an uninformative prior,

which we have shown is a hill-climber on the joint likelihood of our discriminative

model. As a result, we see that hill-climbing on the joint likelihood corresponds

to adding the most relevant feature with respect to the current set S. Again we

re-emphasize, that the resultant gain in the likelihood comes from a combination

of three sources:

I(Xi;Y |S) = I(Xi;Y )− I(Xi;S) + I(Xi;S|Y ). (5.28)

It could easily be the case that I(Xi;Y ) = 0, that is a feature is entirely irrel-

evant when considered on its own — but the sum of the two redundancy terms

results in a positive value for I(Xi;Y |S). We see that if a criterion does not at-

tempt to model both of the redundancy terms, even if only using low dimensional

approximations, it runs the risk of evaluating the relevance of Xi incorrectly.

Definition 15. Irrelevance with respect to the current set S.

Feature Xi is irrelevant to Y with respect to S iff ∀ xi, y, s for which p(Xi =

xi, S = s) > 0 and p(Y = y|Xi = xi, S = s) = p(Y = y|S = s).

Corollary 4. Feature Xi is irrelevant to Y with respect to S, iff I(Xi;Y |S) = 0.

In a forward step, if a feature Xi is irrelevant with respect to S, adding it alone

to S will not increase the joint likelihood. However, there may be further additions

to S in the future, giving us a selected set S ′; we may then find that Xi is then

relevant with respect to S ′. This is because the relevance measure is composed of

the three terms mentioned previously, and the conditional redundancy depends

upon the features which have already been selected. As we noted when talking

about strong relevancy even if I(Xi;Y ) = 0 the feature can still be strongly

relevant. In a backward step we check whether a feature is irrelevant with respect

to {S\Xi}, using the test I(Xi;Y |{S\Xi}) = 0. In this case, removing this feature

will not decrease the joint likelihood.
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5.5 Chapter Summary

In this chapter we have unified 20 years of literature on the construction of mutual

information based feature selection criteria. We took the view of feature selec-

tion as likelihood maximisation from the previous chapter and showed how the

various different mutual information criteria can be seen as approximate max-

imisers of this likelihood with an uninformative prior. Each of the criteria we

discussed makes an of approximation to the true update rule, by assuming the

underlying data distribution has various properties such as feature independence,

or pairwise independence. By using our probabilistic formulation we can make

these assumptions explicit. The most important theoretical difference between

the criteria was how many of the information theory terms they included. Many

criteria included both the relevancy and redundancy term, but fewer included the

conditional redundancy term which accounts for how two features can combine to

become more informative than their separate components. We then performed an

empirical investigation into nine of these criteria, comparing their performance

over a variety of metrics. We investigated their stability with respect to changes

in the datasets, how the criteria perform with small sample sizes, and what the

trade off is between accuracy and stability. We also benchmarked them on the

NIPS feature selection challenge datasets to provide comparable results with the

literature. In this comparison we saw how balancing the size of the relevancy and

redundancy terms is the most important factor in determining empirical perfor-

mance. Finally we related our likelihood based view of mutual information to

the commonly referenced work of Kohavi and John, in the process splitting their

notion of weak relevance into two categories.



Chapter 6

Priors for filter feature selection

In the previous chapter we showed how many common information theoretic

feature selection criteria are approximate optimisers of the joint likelihood of

a specific probabilistic model. We explored the theoretical implications of this

result, analysing how different criteria assumed different factorisations (or inde-

pendences) in the underlying probabilistic model. In this chapter we focus on

what additional benefits we can extract from this novel perspective on feature

selection. Specifically the joint likelihood of a model includes a prior distribution

over the features which encodes how likely any feature is to be selected a priori

(before we have examined any data). In the previous chapter we assumed this

prior was flat or uninformative, now we investigate different kinds of informa-

tive priors, and how they influence the feature selection process. We develop

greedy updates which maximise our joint likelihood under both sparsity and do-

main knowledge priors. We show that an algorithm for structure learning in

Bayesian Networks called IAMB is an exact maximiser of the joint likelihood,

under a specific sparsity prior. We then show how to include domain knowledge

into IAMB.We present experimental results investigating the influence of domain

knowledge on the performance of the modified criteria.

6.1 Maximising the Joint Likelihood

In Chapter 4 we specified our model as a function of θ, τ and λ,

L(D,θ, τ, λ) = p(θ, τ)p(λ)
N∏
i=1

q(yi|xi,θ, τ)q(xi|λ). (6.1)

120
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We saw how to expand this likelihood into the sum of several terms,

−� ≈ Ex,y

{
log

p(yi|xi,θ)

q(yi|xi,θ, τ)

}
+ I(X¬θ;Y |Xθ) +H(Y |X)− 1

N
log p(θ, τ). (6.2)

Then we can maximise this model with respect to θ by finding θ∗,

θ∗ = argmin
θ

(
I(X¬θ;Y |Xθ)− 1

N
log p(θ)

)
. (6.3)

Finally we saw that we can greedily maximise the likelihood by selecting features

one by one according to this optimal criterion,

X∗
k = argmax

Xk∈X¬θt

(
I(Xk;Y |Xθt) +

1

N
log

p(θt+1)

p(θt)

)
. (6.4)

In the previous chapter we took this framework and looked at how the process

of optimising Equation (6.4) under a flat prior relates to the literature. This

framework explains many common information theoretic feature selection criteria

by showing they derive from making different assumptions about the various

probability distributions involved.

We now investigate combining these information theoretic filters with domain

knowledge, in the form of informative prior distributions for θ as opposed to the

flat priors studied previously. We focus on fully factorised priors, where each

feature is considered independently of the others, though the general framework

presented in Chapter 4 can include more structured information.

In Section 3.6 we looked at structure learning algorithms for Bayesian Net-

works, focusing particularly on IAMB [107] and its derivatives. If we now look

at IAMB from the perspective of the previous chapter we can see how it appears

to directly optimise the joint likelihood. Features are selected greedily if they

have a positive conditional mutual information, given all other selected features.

Then IAMB has a backwards pruning step which removes features which have

been made redundant. These two stages appear to be direct implementations of

Equations (4.14) and (4.20), and the algorithm terminates when all remaining un-

selected features have zero information. In practice when working with real data

it is likely that the estimate of the mutual information will differ from the true

value, and it is rare that these calculated values will be exactly zero. Therefore

IAMB uses a threshold value above zero to decide if the true mutual information
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is non-zero. We will see how this threshold value can be interpreted as a spar-

sity prior controlling the number of selected features. We begin by constructing

factorised priors to encode sparsity and domain knowledge.

6.2 Constructing a prior

We will construct priors assuming independence between all the features. As we

saw in the previous chapter this assumption corresponds to the MIM algorithm,

though we do not investigate the use of weaker assumptions in prior construc-

tion. We will use a Bernoulli distribution over the selection probability of each

feature, and then show how to use this prior to impose sparsity or include domain

knowledge.

6.2.1 A factored prior

As mentioned above we treat each feature independently, and assume each p(θi)

is a Bernoulli random variable. Therefore the prior over p(θ) is

p(θ) =
d∏
i

p(θi) =
d∏
i

βθi
i (1− βi)

1−θi . (6.5)

We further define the success probability, βi, of the Bernoulli as a logistic function,

βi =
eαwi

1 + eαwi
=

1

1 + e−αwi
. (6.6)

We define α > 0 as a scaling factor and wi as a per-feature weight with wi = 0

denoting no preference, wi < 0 indicating we believe Xi /∈ X∗, and wi > 0

indicating we believe Xi ∈ X∗. We then define w as the vector of wi elements.

Therefore the prior for p(θ) is,

p(θ) =
d∏
i

(
eαwi

1 + eαwi

)θi(
1− eαwi

1 + eαwi

)(1−θi)

. (6.7)

We can rewrite this prior into a more common form using the fact that θi is
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binary, as follows,

p(θ) =
d∏
i

(
eαwi

1 + eαwi
)θi(1− eαwi

1 + eαwi
)(1−θi)

=
d∏
i

(
eαwi

1 + eαwi
)θi(

1

1 + eαwi
)(1−θi)

=
d∏
i

1

1 + eαwi
(eαwi)θi1(1−θi)

=
d∏
i

eαwiθi

1 + eαwi

=

∏d
i e

αwiθi∏d
i (1 + eαwi)

=
eα

∑d
i wiθi∏d

i (1 + eαwi)

=
eαw

T θ∏d
i (1 + eαwi)

(6.8)

As
∏d

i (1+ eαwi) is constant with respect to θ this is equivalent to specifying p(θ)

as

p(θ) ∝ eαw
T θ. (6.9)

As the prior terms in our greedy maximisation of the likelihood are ratios, then

we do not need the normalisation constant or any other constant factors for this

prior. We note that this formulation is of a similar exponential form to the priors

specified by Mukherjee and Speed [82], and we could extend our framework to

incorporate many of their graph structure priors.

6.2.2 Update rules

When using this factored prior we can rewrite the update rules in Equations (4.14)

and (4.20). The ratio term simplifies as each update only includes or excludes

a single feature, and most of the terms in the prior are constant and cancel.

Therefore the prior ratio when selecting an additional feature is,

p(θt+1)

p(θt)
= eαwk (6.10)
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where wk denotes the weight of the candidate feature. The prior ratio when

removing a feature is
p(θt+1)

p(θt)
= e−αwk . (6.11)

The full update rule when selecting a new feature (i.e. a forward step) is:

X∗
k = argmax

Xk∈X¬θt

(
I(Xk;Y |Xθt) +

αwk

N

)
(6.12)

with a similar update for the backward step. These updates form a greedy max-

imisation of the joint likelihood given in Equation (6.1), where the α and wk

control the strength and class of knowledge respectively.

6.2.3 Encoding sparsity or domain knowledge

We now turn to how exactly to encode knowledge into our prior. When using the

factorised prior described in Equation (6.9) we can specify priors for sparsity or

domain knowledge.

We encode sparsity by setting all wi = −1, and using the α parameter to

decide how much sparsity we wish to impose. Increasing α in this case lowers

the success probability of the Bernoulli distribution for each feature, and it is

this probability that encodes how sparse a solution we impose. A lower success

probability makes each feature less likely to be selected, and thus a smaller number

of features are selected overall. The sparsity term effectively forms a fixed penalty

on the usefulness of each feature. We will denote sparsity priors using the notation

ps(θ) and αs. We therefore define a sparsity prior as

ps(θ) ∝ e−αs|θ|. (6.13)

We use |θ| to represent the number of selected features in θ. This derives directly

from setting all the wi = −1 in Equation (6.9).

By allowing the wi values to range freely we can encode varying levels of

information into the prior, as these again change the success probability of the

Bernoulli, thus encoding how useful a priori we think a given feature is. A

positive wi denotes that the feature is useful and the domain knowledge suggests

it should be selected, and a negative wi denotes the feature has no value and

should not be selected. When wi = 0 we have no extra information to include
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about that particular feature and thus give it an equal probability of selection

and remaining unselected. We will denote such knowledge priors with pd(θ) and

αd leading to an knowledge prior where

pd(θ) ∝ eαdw
T θ. (6.14)

We have now described two kinds of priors which we can integrate into any crite-

rion derived from our discriminative model assumption. To combine both spar-

sity and domain knowledge into the same prior we will define p(θ) ∝ ps(θ)pd(θ).

When using our greedy updates the normalisation constants again disappear as

the prior is only considered in a ratio. If we use this prior then the sparsity and

domain knowledge terms separate out in the forward update as follows

X∗
k = argmax

Xk∈X¬θt

(
I(Xk;Y |Xθ) +

1

N
log

ps(θ
t+1)

ps(θt)
+

1

N
log

pd(θ
t+1)

pd(θt)

)
. (6.15)

Which then further simplify to

X∗
k = argmax

Xk∈X¬θt

(
I(Xk;Y |Xθ)− αs

N
+

αdwk

N

)
. (6.16)

We now turn to the issue of integrating these priors into a feature selection

algorithm. We choose to look at the IAMB algorithm [107], and show how it

maximises the joint likelihood with a sparsity prior.

6.3 Incorporating a prior into IAMB

In Chapter 3 we looked at structure learning algorithms for Bayesian Networks.

We saw how algorithms which recover the Markov Blanket solve a special case

of the feature selection problem, and how the IAMB family of Markov Blanket

discovery algorithms use a conditional independence test based on the mutual

information. In this section we explore the links between IAMB and our dis-

criminative model framework, showing how IAMB optimises the joint likelihood

under a specific sparsity prior.

We repeat the IAMB algorithm [107] in Algorithm 3. The algorithm is param-

eterised by the choice of a conditional independence test, f(X;Y |CMB), which

measures the association of a candidate feature X to the target Y in the context
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of the currently estimated Markov Blanket. Tsamardinos & Aliferis recommend

that instead of a test against zero, that a threshold value is used — when the

measured association is above this threshold, the variables are considered depen-

dent. IAMB has two phases, a greedy forward search of the feature space until

all remaining features are independent of the class given the currently selected

set, and a backward search to remove false positives. Equating the notation in

Algorithm 3 with our own, we have Ω = X, CMB = Xθ, and the independence

test f(X;Y |CMB) = I(Xk;Y |Xθ).

Algorithm 3 IAMB [107].

Phase 1 (forward)
CMB = ∅
while CMB has changed do
Find X ∈ Ω \ CMB to maximise f(X;Y |CMB)
if f(X;Y |CMB) > ε then
Add X to CMB

end if
end while
Phase 2 (backward)
while CMB has changed do
Find X ∈ CMB to minimise f(X;Y |CMB \X)
if f(X;Y |CMB \X) < ε then
Remove X from CMB

end if
end while

Given our probabilistic perspective we can interpret the threshold ε in the

IAMB algorithm as a sparsity prior, ps, by rearranging the independence test in

Algorithm 3,

I(Xk;Y |Xθ) > ε

I(Xk;Y |Xθ)− ε > 0

I(Xk;Y |Xθ) +
1

N
log

ps(θ
t+1)

ps(θt)
=⇒ −ε =

1

N
log

ps(θ
t+1)

ps(θt)
.

−ε = −αs

N

αs = εN (6.17)

We can then see that the threshold ε is a special case of the sparsity prior in Eq

(6.13) with αs = εN , where the strength of the prior is dependent on the number
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of samples N , and a parameter ε.

Theorem 3. Tsamardinos and Aliferis [107] proved that IAMB returns the true

Markov Blanket under the condition of a perfect independence test f(X;Y |CMB).

Given this condition is satisfied, then IAMB is an iterative maximization of the

discriminative model in Equation (6.1), under a specific sparsity prior.

Proof. A perfect independence test comes as a result of sufficient data to estimate

all necessary distributions. In this situation, the first KL term in Equation (6.2)

will be zero. In the previous chapter we derived iterative update steps for our

model, in Equations (4.14) and (4.20) — if we use a sparsity prior of the form

in Equation (6.13), these coincide exactly with the steps employed by IAMB,

therefore it is an iterative maximization of the discriminative model specified in

Equation (6.1).

We can now extend IAMB by introducing informative priors into the Markov

Blanket discovery process. First we define p(θ) ∝ ps(θ)pd(θ) where ps(θ) is

the sparsity prior (or threshold), and pd(θ) is our knowledge prior specified in

Equation (6.14). We can ignore the normalisation constant as we only consider

the ratio of the prior terms. We then use

I(Xk;Y |Xθ) +
1

N
log

ps(θ
t+1)

ps(θt)
+

1

N
log

pd(θ
t+1)

pd(θt)
> 0 (6.18)

as the independence test having expanded out the prior p(θ). Incorporating

pd(θ) into IAMB lowers the “threshold” for features we believe are in the Markov

Blanket and increases it for those we believe are not. We call this modified version

IAMB-IP (IAMB-Informative Prior).

In some cases the knowledge prior, pd, may be larger than the sparsity prior,

ps, causing the algorithm to unconditionally include feature Xk without reference

to the data. We wish to blend the domain knowledge into the statistical evidence

from the data, and so a prior which is strong enough to include features without

reference to the data is undesirable. We therefore recommend a bound on the

strength of the domain knowledge prior, by fixing αd ≤ αs. This bounds the

domain knowledge prior from above and below to ensure it is not strong enough

to blindly include a feature without some evidence from the data.
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Table 6.1: Dataset properties. # |MB| ≥ 2 is the number of features (nodes) in
the network with an MB of at least size 2. Mean |MB| is the mean size of these
blankets. Median arity indicates the number of possible values for a feature.
A large MB and high feature arity indicates a more challenging problem with
limited data; i.e. Alarm is (relatively) the simplest dataset, while Barley is the
most challenging with both a large mean MB size and the highest feature arity.

Name Features #|MB| ≥ 2 Mean |MB| Median Arity
Alarm 37 31 4 2
Barley 48 48 5.25 8
Hailfinder 56 43 4.30 4
Insurance 27 25 5.52 3

6.4 Empirical Evaluation

We compare our novel IAMB-IP against the original IAMB algorithm using a

selection of problems on MB discovery in artificial Bayesian Networks; these

provide a ground truth feature set to compare the selected feature sets against.

The networks used are standard benchmarks for MB discovery: Alarm [7], Barley

[64], Hailfinder [1] and Insurance [9], downloaded from the Bayesian Network

Repository [37]. We sample 20,000 data points from each network for use in all

the experiments. More details are given in Table 6.1.

As our datasets are Bayesian Networks from fields with which we have no

experience, we simulate the process of prior elicitation by selecting certain features

at random. Features can be either upweighted, i.e. we believe them to be in the

MB, or downweighted, i.e. we believe they are not in the MB. Upweighting feature

Xi corresponds to wi = 1, while downweighting sets wi = −1. With this process,

we emulate two types of correct prior knowledge: A true positive (TP) — a feature

Xj ∈ MB that we upweight. A true negative (TN) — a feature Xj /∈ MB that we

downweight. Real prior knowledge is unlikely to be completely correct, hence we

must also test the resilience of IAMB-IP when presented with false information.

A false positive (FP) — a feature Xj /∈ MB that we upweight. A false negative

(FN) — a feature Xj ∈ MB that we downweight. Note that these definitions are

slightly different to those given for TP etc in the general classification problem

in Chapter 2. We will use the term correct priors to denote priors which only

contain True Positives and True Negatives (e.g. 2 TP, TPTN). We will use the

term misspecified priors to denote priors which contain a mixture of true and

false information (e.g. TPFN, TPFP). We expect that these misspecified priors
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Figure 6.1: Toy problem, 5 feature nodes (X1 . . . X5) and their estimated mutual
information with the target node Y on a particular data sample. X1, X2, X5 form
the Markov Blanket of Y .

more accurately reflect the state of domain knowledge. In all experiments we only

consider nodes with a Markov Blanket containing two or more features and we

assess performance using the F-Measure (harmonic mean of precision & recall),

comparing against the ground truth.

In Figure 6.1 we show a toy problem to illustrate the different effects prior

knowledge can have on the Markov Blanket discovery process. FeaturesX1, X2, X5

are in the Markov Blanket of Y and features X3 and X4 are not. IAMB (with the

default threshold) would select only X1 as the MB, based upon the estimated mu-

tual informations given. The performance of IAMB-IP will depend upon what

knowledge is put into the prior. If we upweight X1 it is a true positive, as it

actually lies in the MB, similarly if we downweight X3 it is a true negative. If

we upweight X4 it is a false positive, as it does not lie in the MB of Y , and

similarly downweighting X2 is a false negative as it does lie in the MB of Y . If

we upweighted only X1 IAMB-IP would perform similarly to IAMB, as X1 has a

strong measured association with Y , however upweighting X2 would include that

variable and then X5, as X2 only has a weak measured association with Y and so

the prior will increase it. If X4 is upweighted, (introducing a false positive into

the prior) then it is unlikely to be included, as it has no measured association

with Y , however X3 would be included if it was upweighted. If we downweight

X2, (introducing a false negative) we can see this would remove both X2 and X5,

as X5 only becomes relevant when X2 is included. We can see that false nega-

tives in the prior are more problematic for IAMB-IP, as they can cause multiple

variables to be incorrectly removed from the candidate MB.
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Algorithm 4 Experimental Protocol

for each valid feature do
for dataRepeats times do
data ← selectFold()
MB-I = IAMB(data,feature)
Calculate MB-I F-measure
for 40 repeats do
Generate random prior
MB-IP = IAMB-IP(data,feature,prior)
Calculate MB-IP F-measure

end for
Calculate mean and std. err. for IAMB-IP
Determine win/draw/loss

end for
end for
Average wins/draws/losses over the features

We use the protocol in Algorithm 4 to test the relative performance for two

groups of sample sizes: 10 to 100 samples in steps of 10 (small sample), and 200 to

1000 samples in steps of 100 (large sample). For the large sample we perform 10

trials over independent data samples, and for the smaller sizes we expect a greater

variance and thus use 30 trials. The wins/draws/losses were assessed using a 95%

confidence interval over the IAMB-IP results, compared to the IAMB result. The

variance in IAMB-IP is due to the random selection of features which are included

in the prior, which was repeated 40 times. We set αd = log 99, except when this

was above the bound αd ≤ αs where we set αd = αs. This is equivalent to setting

individual priors p(θi = 1) = 0.99 for upweighted features and p(θi = 1) = 0.01

for downweighted features. We set αs so t = 0.02 for both IAMB and IAMB-IP.

We average these wins/draws/losses over all valid features in a dataset, where a

valid feature is one with a Markov Blanket containing two or more features.

We first investigate the performance of IAMB-IP when using a correct prior.

We tested priors that included 2 true positives, and 1 true positive and 1 true

negative. The average results over the 4 datasets are in the first two columns of

Figure 6.2. We can see that when incorporating correct priors IAMB-IP performs

better than IAMB or equivalently to it in the vast majority of cases. The draws

between IAMB and IAMB-IP are due to the overlap between the statistical infor-

mation in the data and the information in the prior. When the prior upweights a

feature with a strong signal from the data, then the behavior of IAMB-IP is the
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Figure 6.2: Average results: (a) Small sample, correct prior; (b) Large sample,
correct prior; (c) Small sample, misspecified prior; (d) Large sample, misspecified
prior.

same as IAMB. It is when the prior upweights a feature with a weak signal that

the behavior of the two algorithms diverges, and similarly for features that are

downweighted.

We now investigate the more interesting case of misspecified priors, where the

prior contains some incorrect information. We tested priors using 1 true positive

& 1 false negative, and 1 true positive & 1 false positive. These are presented in

the last two columns of Figure 6.2. We can see that IAMB-IP performs equiva-

lently or better than IAMB in four-fifths of the repeats, on average. We present

results for Alarm in Table 6.2, for Barley in Table 6.3, for Hailfinder in Table 6.4

and for Insurance in Table 6.5. We can see that the algorithm is more sensitive

to false negatives than false positives especially when there are small amounts

of data, as the prior knowledge is more important in those situations, hence any

flaws impact performance more. This is because false negatives may remove chil-

dren from the MB, which in turn means no spouse nodes (the other parents of

the common child node) will be included, which magnifies the effect of the false

information.

In summary we can see that the addition of informative priors into IAMB

to give IAMB-IP improves performance in many cases, even when half the prior
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Table 6.2: Win/Draw/Loss results for ALARM network.

Size 2 TP TPTN TPFN TPFP
10 12/18/0 12/17/0 12/16/2 12/17/1
20 12/18/0 12/18/0 11/17/2 12/18/1
30 13/17/0 11/19/0 11/16/2 11/18/1
40 12/17/0 12/17/0 10/17/3 11/17/2
50 13/17/1 12/17/1 11/15/4 12/16/2
60 13/17/1 12/17/1 10/15/5 11/16/3
70 13/17/0 12/17/1 11/14/5 12/15/4
80 12/17/1 13/16/1 10/14/6 12/14/4
90 13/16/1 14/15/1 10/13/7 12/13/6
100 16/13/1 16/13/1 13/12/6 14/11/4

Mean 13/17/1 13/17/1 11/15/4 12/15/3

200 5/4/0 5/4/0 4/4/2 4/3/3
300 6/3/0 6/3/0 4/3/3 4/3/4
400 6/4/0 6/4/0 4/4/3 4/3/4
500 5/4/0 6/4/0 4/4/3 4/3/3
600 4/6/0 4/5/0 3/5/2 3/4/3
700 4/6/0 5/5/0 3/5/2 3/4/3
800 4/6/0 4/6/0 3/5/2 3/4/3
900 3/7/0 3/7/0 2/6/2 2/5/2
1000 3/7/0 3/6/0 2/6/2 3/6/2
Mean 5/5/0 5/5/0 3/4/2 3/4/3

knowledge given is incorrect. This improvement can be seen in extremely small

sample environments with as few as 10 datapoints and 56 features, and still

provides a performance benefit with 1000 datapoints.

We have focused on adding true positives to the prior, and how they interact

with the false information. In our datasets true positives are rarer than true neg-

atives and thus more important, because the Markov Blankets are much smaller

than the number of features. Therefore when we construct the prior at random,

we are more likely to select true positives where the prior information is useful

(i.e. there is not enough statistical information in the data to include the true

positive) as there are fewer true positives to select from. When including true

negatives the prior only improves performance if the true negative appears to be

statistically dependent on the target (and then it is penalised by the prior and

not included), if it does not appear dependent, then the prior information has no

effect on its inclusion. Therefore when only including true negatives IAMB-IP

performs similarly to IAMB.
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Table 6.3: Win/Draw/Loss results for Barley network.

Size 2 TP TPTN TPFN TPFP
10 10/20/0 10/20/0 11/19/1 10/19/1
20 21/9/0 21/9/0 21/8/0 21/7/2
30 20/10/0 20/10/0 20/8/2 20/8/3
40 15/15/0 14/16/0 15/14/2 14/15/1
50 10/20/0 9/21/0 9/19/2 9/20/1
60 12/18/0 12/18/0 11/17/2 11/18/1
70 17/13/0 16/14/0 16/13/1 16/13/1
80 20/10/0 20/10/0 20/9/1 20/8/2
90 21/9/0 21/8/0 21/8/1 21/7/2
100 22/8/0 22/8/0 21/7/1 22/6/2

Mean 17/13/0 17/13/0 17/12/1 16/12/1

200 7/3/0 6/3/0 6/3/1 7/2/1
300 9/1/0 8/2/0 8/1/0 8/2/1
400 8/2/0 8/2/0 8/2/0 8/1/1
500 8/2/0 7/3/0 7/2/1 7/2/1
600 7/3/0 7/3/0 6/3/1 6/3/1
700 6/4/0 5/5/0 5/4/1 5/4/1
800 5/5/0 5/5/0 5/5/1 4/5/1
900 5/5/0 4/6/0 4/5/1 4/5/1
1000 4/6/0 4/6/0 4/5/1 4/5/1
Mean 7/3/0 6/4/0 6/3/1 6/3/1

Table 6.4: Win/Draw/Loss results on Hailfinder

Size 2 TP TPTN TPFN TPFP
10 16/14/0 15/15/0 15/12/3 15/14/1
20 13/17/0 13/17/0 12/15/3 12/17/1
30 12/18/0 12/18/0 11/15/4 11/18/1
40 10/19/0 11/19/0 10/16/3 10/19/1
50 14/16/0 14/16/0 12/14/4 12/16/1
60 12/18/0 12/18/0 11/14/5 11/17/1
70 10/20/0 10/20/0 9/16/5 9/20/1
80 11/19/0 10/20/0 10/16/4 10/19/1
90 12/17/0 12/18/0 11/15/4 12/17/1
100 15/15/0 15/14/1 13/12/5 14/14/1

Mean 12/17/0 12/18/0 11/14/4 12/17/1

200 6/4/0 6/4/0 5/4/2 5/4/1
300 6/4/0 6/4/0 5/4/2 6/4/1
400 6/4/0 6/4/0 5/4/2 5/4/1
500 6/4/0 5/4/0 4/4/2 5/4/1
600 6/4/0 5/5/0 4/4/2 4/4/1
700 5/5/0 5/5/0 4/4/2 4/5/1
800 4/6/0 4/6/0 4/4/2 4/5/1
900 4/6/0 3/6/0 3/5/2 4/6/0
1000 4/6/0 3/6/0 3/6/2 3/6/0
Mean 5/5/0 5/5/0 4/4/2 4/5/1
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Table 6.5: Win/Draw/Loss results for Insurance.

Size 2 TP TPTN TPFN TPFP
10 9/20/0 9/21/0 8/18/4 7/19/3
20 10/19/0 11/19/1 9/16/5 9/17/3
30 12/18/0 11/18/1 9/17/5 11/16/4
40 12/17/1 10/19/1 10/14/5 10/16/4
50 12/16/1 12/17/1 11/14/6 11/15/4
60 12/17/1 12/17/1 9/14/7 11/15/4
70 13/15/1 13/16/1 10/13/7 11/15/5
80 14/15/2 13/15/2 10/14/7 11/14/5
90 13/15/2 14/15/2 9/12/8 10/15/5
100 18/9/3 18/10/3 14/10/6 15/10/5

Mean 13/16/1 12/17/1 10/14/6 11/15/4

200 7/2/1 7/3/1 5/3/2 5/3/2
300 8/2/0 7/3/1 5/3/2 5/2/2
400 8/2/0 7/3/1 5/3/3 4/3/3
500 7/3/1 6/3/1 4/3/3 4/3/3
600 6/3/1 5/4/0 4/4/2 5/3/2
700 6/4/0 5/4/1 3/4/3 3/4/3
800 5/4/1 5/4/1 4/4/3 4/4/2
900 5/5/1 4/5/1 3/5/3 4/5/2
1000 4/5/1 4/5/1 3/5/2 3/5/2
Mean 6/3/1 6/4/1 4/4/2 4/4/2

6.5 Chapter Summary

In this chapter we explored one of the benefits of our likelihood based approach

to feature selection, namely the inclusion of informative priors. We constructed

simple factored priors which we used in two different ways, either to promote

sparsity or to include domain knowledge. We incorporated these priors into the

Markov Blanket discovery algorithm IAMB, blending the prior knowledge into

the statistical information from the data.

We saw that analysing IAMB from the perspective of joint likelihood max-

imisation showed it to use a sparsity prior to control the number of features

selected. Our extension of IAMB to include informative priors, called IAMB-IP,

essentially adjusts the threshold in the IAMB algorithm based upon the supplied

prior knowledge.

We tested IAMB-IP against IAMB, showing the new algorithm to be resistant

to poor prior knowledge, as it improved performance against IAMB even when

the prior contained 50% false information.



Chapter 7

Cost-sensitive feature selection

In the previous three chapters we looked at how feature selection using infor-

mation theory maximises the joint likelihood of a discriminative model. This

allows us to combine information theoretic measurements from the data, with

prior knowledge from domain experts and therefore select features which best

combines these two sources of information. In this chapter we apply the machin-

ery from Chapter 4 to a different loss function, namely the weighted conditional

likelihood [31]. In the binary classification problem this loss function is a bound

on the empirical risk of the dataset, which measures how costly misclassification

is for each example. We thus derive a cost-sensitive filter feature selection cri-

teria, which coincides with Guiaşu’s definition of weighted information theory

[46]. We prove several novel results with respect to this variant of information

theory, to allow its use as a feature selection criteria. We present experimental

results showing that the cost-sensitive selection criteria can be combined with a

cost-insensitive classifier to create an overall cost-sensitive system.

7.1 Deriving a Cost Sensitive Filter Method

In Chapter 2 we briefly looked at the weighted likelihood from Dmochowski et

al. [31], detailing its properties. We now briefly revise those properties before

moving on to novel material.

Dmochowski et al. [31] investigate using a weighted likelihood function to

integrate misclassification costs into the (binary) classification process. Each

example is assigned a weight based upon the tuple {x, y}, and the likelihood of

that example is raised to the power of the assigned weight. They prove that

135
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the negative weighted log likelihood forms a tight, convex upper bound on the

empirical loss, which is the expected conditional risk across a dataset. This

property is used to argue that maximising the weighted likelihood is the preferred

approach in the case where the classifier cannot perfectly fit the true model.

Unfortunately the weighted likelihood has only been shown to bound the

risk in binary cost-sensitive problems. In multi-class cost-sensitive problems the

likelihood does not accurately represent the misclassification probabilities of the

other classes, as the sum of these values is equal to 1 − p(yi|xi) and they may

be unevenly weighted by the per example weight vector. Any weighted feature

selection process is likely to work best in the multi-class case as then it is more

probable that each label will have a different set of predictive features. Therefore

we avoid this problem by adjusting the weight of each datapoint in the likelihood.

We propose that if we use the sum of the per example weight vector,

ws(y
i,xi) =

∑
y∈Y,y �=yi

w(yi,xi, y) (7.1)

we will ensure the weighted likelihood still forms an upper bound on the em-

pirical risk. This takes a pessimistic view of the classification problem, as a

mis-prediction which has a high weight may have a very low probability, but the

weighted likelihood will still be small. We note that this forms a looser upper

bound on the empirical risk than in the binary case, but reduces to the same

likelihood in binary problems. Cost-sensitive feature selection is an interesting

case of the general cost-sensitive problem as when using a filter technique it is

difficult to generate predicted labels with which to calculate the misclassifica-

tion error. This generalisation of the weighted likelihood provides an objective

function which allows the construction of cost-sensitive feature selection.

7.1.1 Notation

We use similar notation to Chapter 4 summarised here for clarity, with exten-

sions to include misclassification costs. We assume an underlying i.i.d. process

p : X → Y , from which we have a sample of N observations. Each observation is

a tuple (x, y,w), consisting of a d-dimensional feature vector x = [x1, ..., xd]
T , a

target class y, and an associated non-negative |Y | − 1 dimensional weight vector,

w, for that observation, with x and y drawn from the underlying random vari-

ables X = {X1, ..., Xd} and Y . Furthermore, we assume that p(y|x) is defined
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by a subset of the d features in x, while the remaining features are irrelevant or

redundant. We consider the weight for a particular example to be a function

only of the label y. This important restriction is necessary (see Section 7.2) to

ensure the weighted mutual information has a unique non-negative value. This

is a slightly less general formulation for the weights than the standard definition

given by Elkan [38], but is still flexible enough to include cost-matrices which do

not depend upon x.

We adopt a d-dimensional binary vector θ: a 1 indicating the feature is se-

lected, a 0 indicating it is discarded. Notation xθ indicates the vector of selected

features, i.e. the full vector x projected onto the dimensions specified by θ. No-

tation x¬θ is the complement, i.e. the unselected features. The full feature vector

can therefore be expressed as x = {xθ,x¬θ}. As mentioned, we assume the pro-

cess p is defined by a subset of the features, so for some unknown optimal vector

θ∗, we have that p(y|x) = p(y|xθ∗). In this chapter we consider the conditional

likelihood of the labels given the data, rather than the full joint likelihood anal-

ysed in Chapter 4. This is due to the bound in Dmochowski et al. only being

proved for the weighted conditional likelihood. The construction of a weighted

discriminative model likelihood is left to future work. Therefore our model does

not consider the generation of the datapoints, thus we only have two layers of

parameters in our hypothetical model q, namely: θ representing which features

are selected, and τ representing parameters used to predict y.

7.1.2 Deriving cost-sensitive criteria

In this section we take the weighted likelihood from Dmochowski et al. [31] and

decompose it into a sum of terms, where each term relates to a different part

of the classification process. This follows a similar process to the derivation in

Chapter 4. If we further make the filter assumption (Definition 8) we derive a

weighted feature selection criterion, which uses the weighted mutual information

(see Section 7.2) to score features. As mentioned previously when working in

the multi-class case, we use the sum of the per-example weight vector, wi as the

weight w(yi) in the likelihood.

We approximate the true distribution p with our model q, with separate pa-

rameters for the feature selection, θ, and for classification, τ . We define the
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conditional likelihood as follows,

Lw(D,θ, τ) =
N∏
i=1

q(yi|xi,θ, τ)w(yi). (7.2)

We choose to work with the scaled negative log-likelihood, −�w, converting our

maximisation problem into a minimisation problem. This gives

−�w = − 1

N

N∑
i=1

w(yi) log q(yi|xi,θ, τ) (7.3)

which is the function we will minimise with respect to {θ, τ} (this is the initial

position of Dmochowski et al. as they only consider the log-likelihood). We first

introduce the ratio p(y|x)
p(y|x) into the logarithm, this is the probability of the correct

class given all the features. We can then expand the logarithm into two terms,

−� = − 1

N

( N∑
i=1

w(yi) log
q(yi|xi,θ, τ)

p(yi|xi)
+

N∑
i=1

w(yi) log p(yi|xi)

)
. (7.4)

The first term is the weighted log-likelihood ratio between the true model and our

predictive model, and the second term is the weighted log-likelihood of the true

model. This latter term is a finite sample approximation to the weighted condi-

tional entropy [46]. This represents both the amount of uncertainty in the data,

and how costly that uncertainty is. It forms a bound on the maximum amount

of performance we can extract from our dataset, in terms of the conditional risk.

We now wish to separate out feature selection from the classification process.

We do this by introducing another ratio into the first logarithm, namely p(y|x,θ)
p(y|x,θ) .

This is the probability of the correct class given the features selected by θ. We

can then further expand the first logarithm as follows,

−�w = − 1

N

( N∑
i=1

w(yi) log
q(yi|xi,θ, τ)

p(yi|xi,θ)
+

N∑
i=1

w(yi) log
p(yi|xi,θ)

p(yi|xi)

+
N∑
i=1

w(yi) log p(yi|xi)

)
. (7.5)

Similarly to the previous expansion from Chapter 4, we have expanded the

weighted conditional likelihood into a sum of three terms. In this case each term is
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weighted by a per example cost. As our weights are functions of the class label y,

the per-example weight w(yi) and the per-state weight w(y) are identical. We can

then treat each of the summations above as approximations to the expectation

over each term, replacing the per-example weights with per-state weights. It is

this step which removes some of the power of our weighted likelihood as compared

to the weighted likelihood used in Dmochowski et al. , though we shall see it is

necessary to ensure the information theoretic values remain non-negative.

Again by similar logic to Chapter 4, we can interpret the second term in

Equation (7.5) as a finite sample approximation to the weighted conditional mu-

tual information Iw(X¬θ;Y |Xθ),

Iw(X¬θ;Y |Xθ) =
∑

x,y∈X,Y

w(y)p(x, y) log
p(x¬θ, y|xθ)

p(x¬θ|xθ)p(y|xθ)

≈ − 1

N

N∑
i=1

w(yi) log
p(yi|xi,θ)

p(yi|xi)
. (7.6)

and the third term as a finite sample approximation to the weighted conditional

entropy Hw(Y |X),

Hw(Y |X) = −
∑

x,y∈X,Y

w(y)p(x, y) log p(y|x) ≈ − 1

N

N∑
i=1

w(yi) log p(yi|xi).

We can now write −�w as the sum of weighted information theoretic quantities,

−�w ≈ Ex,y

{
w(y) log

p(yi|xi,θ)

q(yi|xi,θ, τ)

}
+ Iw(X¬θ;Y |Xθ) +Hw(Y |X). (7.7)

We note that the optimal feature set θ∗ is the set which makes Iw(X¬θ;Y |Xθ) =

0. This can only occur when p(x¬θ, y|xθ) = p(x¬θ|xθ)p(y|xθ), as the addition of

weights does not change position of the minima of the mutual information.

If we have discovered the optimal feature set or a superset thereof (i.e. X∗ ⊆
Xθ) then p(y|x,θ) = p(y|x). The expectation in the first term can also then be

seen as a finite sample approximation to a weighted KL-Divergence (also known

as the weighted relative entropy [102]). This divergence represents how well the

predictive model fits the true distribution, given a superset of the optimal feature

set and how important each prediction is.

We have now decomposed the weighted conditional likelihood �w into three
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terms, which relate to the cost-weighted classification performance of an arbitrary

probabilistic predictor, the quality of the chosen feature set, and the quality of the

data respectively. An important point to note about this formulation of weighted

feature selection is that the addition of weights does not change the optimal

feature set, in the sense that the feature set θ∗ which makes p(y|x,θ∗) = p(y|x)
is identical for all possible weightings. This is because the Markov Blanket for

the class label does not change when using a different evaluation metric. Thus

the use of the weighted mutual information as a selection criteria gives the same

optimal set as the standard mutual information. However, in the case where we

iteratively construct a feature set, the relative selection order can be different

between the weighted and unweighted information. Also if we select features

using an approximate criterion like those examined in Chapter 5 which cannot

recover the Markov Blanket, we can expect that the weighted variant will return

a different feature set. This is because while the minima of Iw(X¬θ;Y |Xθ) are

identical to the minima of I(X¬θ;Y |Xθ), the same is not necessarily true for (for

example) the JMI criterion. We will explore this effect in the experiments, and

show how different the top 50 features are when chosen using a weighted mutual

information versus the standard mutual information.

In the following section, we derive iterative update rules for the feature set,

that guarantee an increase in weighted mutual information.

7.1.3 Iterative minimisation

We now derive iterative update rules which greedily maximise our formulation of

the weighted likelihood. These derivations are similar to the derivations given in

Chapter 4 but use the weighted mutual information. The literature surrounding

the weighted mutual information has no proof for non-negativity or an equivalent

definition for the chain rule of mutual information, which are necessary for the

derivation of iterative update rules. We provide such proofs in the next section,

and in this section assume the existence of such proofs.

By using the chain rule, we can separate out the most informative feature

from X¬θ and add it to Xθ. We add a superscript t to θ to denote which time

step the feature sets are from, and proceed to derive the forward update that

maximises the weighted likelihood. The proof takes a similar form to the proof

of Theorem 1 from Chapter 4.
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Theorem 4. The forward update which maximises the weighted likelihood is to

select the feature Xj ∈ X¬θ,

Xj = argmax
Xj∈X¬θ

Iw(Xj;Y |Xθ). (7.8)

Proof. The feature which maximises the weighted likelihood is the feature which

minimises Iw(X¬θt+1 ;Y |Xθt+1) from Iw(X¬θt ;Y |Xθt), where Xθt+1 = Xθt ∪ Xj

and X¬θt+1 = X¬θt \Xj for some Xj ∈ X¬θt . We can express this as,

Iw(X¬θt+1 ;Y |Xθt+1) = Iw(X¬θt ;Y |Xθt)− Iw(Xj;Y |Xθt). (7.9)

Then we see that the feature Xj which minimises Iw(X¬θt+1 ;Y |Xθt+1) is,

Xj = argmax
Xj∈X¬θt

Iw(Xj;Y |Xθt). (7.10)

A similar update can be found for the backwards step, analogous to Theorem 2

from Chapter 4. Both these updates are similar to the updates derived in Chapter

4 (which might be expected due to the machinery involved in generating them)

though they use the weighted mutual information developed by Guiaşu, rather

than Shannon’s formulation. In Section 7.3 we proceed to create a weighted

variant of the JMI filter criterion [110], by substituting the weighted mutual

information for the Shannon mutual information, and supplying appropriate cost

vectors. First we must prove the non-negativity property and the chain rule used

in the above theorem.

7.2 Weighted Information Theory

The weighted mutual information has appeared several times in the literature

[46, 75, 96] but there has been little investigation of the theoretical properties

of such a measure. As mentioned previously this literature lacks two important

properties necessary for feature selection using the kind of iterative updates used

throughout this thesis. We now review those important properties of the weighted

mutual information, namely, non-negativity and the chain rule.
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Table 7.1: An example of a negative wI, wI(X;Y ) = −0.0214.

w y = 1 y = 2
x = 1 1 1
x = 2 1 2

p(x, y) y = 1 y = 2
x = 1 0.3 0.3
x = 2 0.3 0.1

Value p(x) p(y)
1 0.6 0.6
2 0.4 0.4

7.2.1 Non-negativity of the weighted mutual information

Non-negativity is an important property to ensure that adding a feature does

not reduce our measure of the information held in Xθ. The non-negativity of

Shannon’s mutual information is a well-known axiom of information theory, as

it is based upon the KL-Divergence, which can be proved to be non-negative

via Jensen’s inequality [24]. Unfortunately the weighted mutual information is a

form of weighted relative entropy [102], which was shown by Kv̊alseth [68] to take

negative values in certain situations. We first present a concrete example with a

negative weighted mutual information before providing a variant of the measure

which is proved to be non-negative for all valid inputs.

The definition of the weighted mutual information given by Guiaşu [46] (de-

fined as the Q-MI by Luan et al. [75] and wI by Schaffernicht and Gross [96]) is

as follows,

wI(X;Y ) =
∑
x∈X

∑
y∈Y

w(x, y)p(x, y) log
p(x, y)

p(x)p(y)
. (7.11)

Note that this weight depends on the value of both x and y; in this case, the

information can be negative. Table 7.1 presents an example distribution forX and

Y which gives a negative weighted mutual information; in this case wI(X;Y ) =

−0.0214.

Therefore, knowledge of the variable X reduces what we know about Y 1. We

can avoid this problem with our measure if we define the weights so that they

are dependent upon a single variable i.e. ∀x, y w(x, y) = w(y). This still gives

valid weights under the conditions of weighted information theory, i.e. p(y)w(y) =∑
x∈X w(x, y)p(x, y), which is the necessary condition for the definition of a unique

mutual information [46]. We restricted the weights in our weighted likelihood such

that they only depend upon y, therefore this limitation does not affect our earlier

derivation. We therefore define our weighted mutual information as a function

1An alternative explanation is that knowledge of X may cause us to make more costly
predictions for Y .
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only of the class labels, as follows,

Iw(X;Y ) =
∑
x∈X

∑
y∈Y

w(y)p(x, y) log
p(x, y)

p(x)p(y)
. (7.12)

Theorem 5. The weighted mutual information, Iw, is non-negative if the weights

are a function of a single random variable. Therefore ∀X, Y, w Iw(X;Y ) ≥ 0.

Proof. We begin by relating the weighted mutual information to the (unweighted)

KL-Divergence.

Iw(X;Y ) =
∑
x∈X

∑
y∈Y

w(y)p(x, y) log
p(x, y)

p(x)p(y)

=
∑
y∈Y

w(y)
∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
y∈Y

w(y)p(y)
∑
x∈X

p(x|y) log p(x|y)p(y)
p(x)p(y)

=
∑
y∈Y

w(y)p(y)
∑
x∈X

p(x|y) log p(x|y)
p(x)

=
∑
y∈Y

w(y)p(y)DKL{p(x|y)||p(x)}. (7.13)

As all the weights w(y) are non-negative, p(y) is non-negative, and the KL-

Divergence is non-negative, then our new weighted mutual information, Iw, is

non-negative.

7.2.2 The chain rule of weighted mutual information

One further essential property of an information measure defines how variables

interact. In the standard formulation of Shannon’s Information Theory this is

the chain rule of mutual information, I(AB;Y ) = I(A;Y ) + I(B;Y |A), and

separates out the information shared between a joint random variable and a target

random variable into two components, the individual mutual information of the

first variable and the target, plus the second variable and the target conditioned

upon the first. We provide an equivalent rule for the weighted mutual information.
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Theorem 6. The weighted mutual information, Iw, between a joint random vari-

able and a single random variable can be decomposed as follows,

Iw(AB;Y ) = Iw(A;Y ) + Iw(B;Y |A). (7.14)

Proof. Due to Theorem 5 we only define the chain rule such that Y is never

conditioned upon, and we define ∀x, z, y w(x, z, y) = w(y). We thus define the

chain rule as follows,

Iw(XZ;Y ) =
∑
x∈X

∑
y∈Y

∑
z∈Z

w(y)p(x, y, z) log
p(x, y, z)

p(x, z)p(y)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

w(y)p(x, y, z) log
p(x, y)p(z|y, x)
p(z|x)p(x)p(y)

=
∑
x∈X

∑
y∈Y

w(y)p(x, y) log
p(x, y)

p(x)p(y)

+
∑
x∈X

∑
y∈Y

∑
z∈Z

w(y)p(x, y, z) log
p(z|y, x)
p(z|x)

= Iw(X;Y )

+
∑
x∈X

∑
y∈Y

∑
z∈Z

w(y)p(x, y, z) log
p(z, y|x)

p(z|x)p(y|x)
= Iw(X;Y ) + Iw(Z;Y |X).

This property is independent of the restriction on the weights defined in Theorem

5, though the non-negativity property is crucial to ensure the iterative updates

maximise the weighted likelihood. We can now see due to the chain rule and the

definition of X = {Xθ, X¬θ} that,

Iw(X;Y ) = Iw(Xθ;Y ) + Iw(X¬θ;Y |Xθ). (7.15)

Therefore, since Iw(X;Y ) is a constant with respect to θ, minimizing Iw(X¬θ;Y |Xθ)

is equivalent to maximising Iw(Xθ;Y ).

We now turn to the task of constructing filter criteria which approximate the

difficult to estimate update rules given in Section 7.1.3.
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7.3 Constructing filter criteria

We note from our work in the previous section that we can only construct weighted

mutual informations which include the variable Y which our weights are defined

over. This limits the possible feature selection criteria, but fortunately many of

the common ones can be re-expressed in the right form. We focus on adapting

the JMI criterion [110], as this is the best performing criterion from our earlier

empirical study (see Chapter 5). We also use a weighted variant of MIM, which

ranks features according to their univariate weighted mutual information. We

expect that the other criteria we investigated in that chapter could be adapted to

work in this weighted likelihood framework, and the weighted mutual information,

provided they can be expressed using mutual informations between Y and X.

Unfortunately this restriction excludes popular criteria such as mRMR, as they

cannot be written in the necessary form.

We define the weighted variant of the MIM criterion (referred to as wMIM)

as follows:

Jwmim(Xk, w) = Iw(Xk;Y ). (7.16)

Similarly, we define the weighted variant of the JMI criterion (referred to as

wJMI) as follows:

Jwjmi(Xk, S, w) =
∑
Xj∈S

Iw(XkXj;Y ). (7.17)

We then combine these criteria with a greedy forward search, to produce a fea-

ture selection algorithm. As mentioned previously the use of weights does not

change the minima of the likelihood with respect to θ, however when using an

approximate optimiser such as wJMI the feature sets returned are different. This

is due to the pairwise independence assumption made in the JMI criterion [14],

which stops the criterion from determining when it has reached the optima. We

shall see this effect in the empirical study, as the feature sets selected by JMI and

wJMI (and by MIM and wMIM) diverge.

One important point to note is that as we only consider the rankings of indi-

vidual features the magnitude of the weight vector is irrelevant. If we normalise

the weight vector w so it sums to 1, this will return exactly the same feature set

(using wJMI or wMIM) as if we multiplied each weight by a positive value.
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7.4 Empirical study of Weighted Feature Selec-

tion

We compare our cost-sensitive feature selection algorithm against three different

competitors. The first is simply using a normal cost-insensitive feature selection

algorithm (in our case JMI), combined with a standard classifier (a linear SVM).

The second is the ‘standard’ cost-sensitive methodology, where a normal feature

selection algorithm is used with a cost-sensitive classifier, in our case a weighted

SVM [17], which aims to minimise the mis-classification cost of the training data.

The third approach is a form of oversampling of the costly class. As our likelihood

takes the form of examples raised to the power of a weight, it can be see as

replicating an example w(y) times. We mirror this process to produce a new

dataset using a deterministic oversampling process which repeats an example w(y)

times, where w(y) is the (integer) cost for that example’s label. We also present

results comparing against the multi-class feature selection algorithm (Spread-

FX) from Forman [43], using the random scheduler, modified to sample from the

weight distribution rather than the uniform distribution.

We use a selection of multi-class datasets to evaluate our new approach: the

well-known MNIST digit classification dataset, and 5 text-mining datasets taken

from Han and Karypis [52]. These datasets provide a large number of both

features and samples, and the features from the MNIST dataset [71] can be

easily visualised to show the differences between our technique and the cost-

insensitive baseline. As before we calculate all mutual informations on discretised

versions of the datasets, with 10 bins, using a histogram estimator of the necessary

probabilities. Our scoring metrics are the precision, recall and F-measure of the

costly class, along with the accuracy across all classes.

Our aim is to test the ability of cost-sensitive feature selection to produce a

cost-sensitive system when combined with a standard (cost-insensitive) classifier,

analogously to how resampling the training data produces a cost-sensitive system

when combined with a standard (cost-insensitive) classifier.

7.4.1 Handwritten Digits

We selected 500 instances at random from each class label in the MNIST data,

to give a 5000 example dataset, to reduce the training times of our classification

models. All results reported are 10-fold cross validation runs, selecting the top 50
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features according to the various feature selection algorithms. We used a linear

Support Vector Machine (SVM) as the classification model, using the LibSVM

[17] implementation with default parameter settings.

In Figures 7.2 and 7.3 we present results from this dataset where the costly

class is the digit “4”. The average 4 in our dataset is presented in Figure 7.1.

Figure 7.2a shows the different algorithms tested with w(y =“4”) = 5, so the

digit “4” is five times more important than the other labels, which were given a

weight of one. Each group of bars represents a different approach to the cost-

sensitive problem: the first group is the standard cost-insensitive approach, where

the JMI algorithm is used to select 50 features, and then an SVM is trained on

those features. The second group is our approach, where we include the weight

in the feature selection process with wJMI and use a standard SVM to fit the

data. The third group uses JMI with a weighted SVM, and finally the fourth

group oversample the costly class according to the weight. We can see that the

introduction of weights does not alter the overall classification performance (the

leftmost bar in each group is approximately the same), but the precision, recall

and F-measure change when the weighted approaches are used. Our method

improves both precision and recall over the baseline, whereas using a weighted

classifier trades off precision for recall (i.e. it predicts many more false positives).

Figure 7.3a shows how the F-Measure on class 4 changes for the three weighted

methods using weights w(y = 4) = {1, 5, 10, 15, 20, 25, 50, 100}. In contrast to

wJMI the weighted classifier degrades performance as it predicts many false pos-

itives. Figure 7.3b shows a precision/recall plot of the various approaches, with

the cost-insensitive approach appearing as a filled black circle. The size of the

marker represents the weight, from the range given above. We can see how the

weighted feature selection improves both precision and recall for all settings of

the weights whereas oversampling only improves recall, and the weighted classifier

improves recall at the cost of precision.

Finally in Figure 7.2b we show the different features selected by the standard

JMI algorithm, and the wJMI algorithm with w(y = 4) = 100. The light gray

features are those which were selected by JMI and not by wJMI, the dark gray

features are those selected by both algorithms, and the black features are those

selected by wJMI alone. This shows how the wJMI algorithm selects features

which are predictive of the presence or absence of a 4. The large black block

at the top of the image represents the area which differentiates a 4 from a 9 in
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Figure 7.1: The average pixel values across all 4s in our sample of MNIST.

(a) Accuracy is across the whole dataset,
with 95% Confidence across 10-fold CV, us-
ing (w)JMI.

(b) Difference in selected features be-
tween JMI and wJMI, w(y = 4) = 100

Figure 7.2: MNIST Results, with “4” as the costly digit.

the dataset, and the dark area in the bottom left differentiates a 4 from a 2, 5,

6, or 8 as those digits require pixels in that area. The other black features are

to positively detect a 4. We can see that this weighted approach selects features

which are predictive of the presence of a 4 and discriminate against false positives.

We present the average improvement in precision and recall across all digits

in our MNIST dataset in Table 7.2, where each digit in turn was given a weight

w(y) = 10. We can see that the weighted feature selection improves both precision

and recall, resulting in an improved F-measure, whereas the other approaches

have high recall, but low precision (i.e. predict many false positives), resulting

in little improvement in the F-measure. We also present the improvement in

precision and recall for the digit 4 in Table 7.3.
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(a) F-Measure with 95% Confidence, across
10-fold CV.

(b) Precision/Recall plot, where the
marker size indicates the weight w.

Figure 7.3: MNIST Results, with “4” as the costly digit, using w(y = 4) =
{1, 5, 10, 15, 20, 25, 50, 100} and (w)JMI. LEFT: Note that as costs for mis-
classifying “4” increase, the weighted FS method increases F-measure, while the
weighted SVM suffers a decrease. RIGHT: The black dot is the cost-insensitive
methodology. Note that the weighted SVM can increase recall above the 90%
mark, but it does so by sacrificing precision. In contrast, the weighted FS method
pushes the cluster of points up and to the right, increasing both recall and pre-
cision.

Table 7.2: MNIST results, averaged across all digits. Each value is the difference
(x 100) in Precision, Recall or F-Measure, against the cost-insensitive baseline.

Algorithm Δ Pre Δ Rec Δ F-Measure
wJMI 6.3 5.1 5.7

weighted SVM -17.0 10.4 -7.0
Oversampling -8.9 11.5 -0.6

Table 7.3: MNIST results, digit 4. Each value is the difference (x 100) in Preci-
sion, Recall or F-Measure, against the cost-insensitive baseline.

Algorithm Δ Pre Δ Rec Δ F-Measure
wJMI 18.5 18.5 18.5

weighted SVM -22.6 26.7 -6.7
Oversampling 0.1 24.3 10.5
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(a) F-Measure on the digit “4” with 95%
Confidence, across 10-fold CV.

(b) F-Measure on the digit “9” with 95%
Confidence, across 10-fold CV.

Figure 7.4: MNIST Results, with both “4” and “9” as the costly digits, using
w(y = (4 ∨ 9)) = {1, 5, 10, 15, 20, 25, 50, 100} and (w)JMI, F-Measure.

We might also wish to understand the performance of our weighted measure

when we upweight two classes simultaneously. We investigated this by upweight-

ing both “4” and “9” in the same run, as these digits are often confused by

pattern recognition systems. In Figure 7.4 we present the results as we increase

the weights on both 4s and 9s, in terms of the F-Measure. In Figure 7.5 we

present the same experiments as a scatter plot of precision and recall. We can see

that in this case the weighted SVM fails to differentiate between 4s and 9s, and is

dominated by both the oversampling and our weighted feature selection. Again

the oversampling improves the recall of the upweighted classes, and the weighted

feature selection improves both precision and recall, though the improvement in

recall is less than the oversampling approach. We note that our technique is suc-

cessful in improving both precision and recall in both of the upweighted classes,

showing it has selected features which can differentiate between 4s and 9s.

Finally we compare our weighted method against the SpreadFX algorithm

by Forman [43]. In Forman’s paper he suggests the extension of the SpreadFX

algorithm to use a random sampler on a non-uniform distribution. We create such

a distribution by normalising our weight vector so that it sums to one, and then

use it in the Rand-Robin scheduler. This leads to a cost-sensitive feature selection

algorithm, though it is quite different from our approach. SpreadFX converts any

given multi-class problem into a series of |Y | one-versus-all binary problems, then

performs feature selection on each sub-problem. The scheduler is then used to

select features from each of the rankings constructed on the sub-problem. This
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(a) Precision/Recall plot for the digit “4”,
the marker size indicates the weight w.

(b) Precision/Recall plot for the digit “9”,
the marker size indicates the weight w.

Figure 7.5: MNIST Results, with both “4” and “9” as the costly digits, using
w(y = (4 ∨ 9)) = {1, 5, 10, 15, 20, 25, 50, 100} and (w)JMI, Precision/Recall plot.

has two important drawbacks in terms of the information theoretic measures we

have used: first the runtime complexity scales with the number of classes, and

second it is harder to use a multivariate ranking technique such as JMI, as it

is unclear what the set of selected features should be. One further issue is that

the feature selection process becomes stochastic, unlike the rest of the algorithms

we consider throughout this thesis. As it is difficult to construct multivariate

ranking techniques using Spread-FX we compare SpreadFX against wMIM rather

than the wJMI used throughout the rest of the cost-sensitivity experiments. In

Table 7.4 we present the average improvement in precision, recall and F-measure

compared against the cost-insensitive method. This table is identical to Table

7.2 in terms of experimental methodology except that it uses MIM instead of

JMI. We also present a bar chart comparing the different methods with “4”

as the costly digit (this figure uses an identical setup to Figure 7.2a, except

using MIM instead of JMI). We can see that SpreadFX performs equivalently

or better than our proposed weighted feature selection criteria, though it is not

statistically significantly better. The SpreadFX approach is reminiscent of multi-

label approaches as it assumes independence between the feature sets for each

label. In contrast weighted feature selection criteria such as wMIM and wJMI

score highly features which are useful for predicting multiple classes, especially if

multiple classes have been upweighted.
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Figure 7.6: MNIST Results, using wMIM comparing against SpreadFX, with “4”
as the costly digit.

Table 7.4: MNIST results, averaged across all digits. Each value is the difference
(x 100) in Precision, Recall or F-Measure, against the cost-insensitive baseline.

Algorithm δ Precision (%) δ Recall (%) δ F-Measure (%)
wMIM 3.9 4.4 4.2

Weighted Classifier -13.5 10.3 -4.1
SpreadFX 6.0 6.6 6.4

Oversampling -6.7 11.3 1.0

7.4.2 Document Classification

We chose 5 document classification datasets from Han and Karypis [52] (the

datasets are listed in Table 7.5). We tested these datasets using the same proce-

dure as the MNIST datasets, selecting 50 features with either our wJMI criterion,

or the standard JMI criterion and classifying using either a normal or weighted

SVM. We ran each experiment using 10-fold cross validation where each class

was upweighted in turn with w(y) = 10, and present the Wins/Draws/Losses

at the 95% confidence interval in Table 7.6. The first three columns are com-

paring against the cost-insensitive method, and we see that the weighted feature

selection improves the F-measure in some cases, but the weighted SVM and over-

sampling approaches degrade performance in many cases. When comparing the

weighted feature selection against the weighted classifier or oversampling (the last

two columns) we see that the weighted feature selection improves upon weighted

classification in many cases, particularly with the ohscal dataset, which was the

largest dataset we tested, with 11162 examples and 11465 features.
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Table 7.5: Summary of text classification datasets.

Dataset Features Examples Classes
fbis 2000 2463 17
la12 31472 6279 6
ohscal 11465 11162 10
re0 2886 1504 13
re1 3758 1657 25

Table 7.6: Document classification results: F-Measure W/D/L across all labels,
with the costly label given w(y) = 10.

Data wJMI wSVM Oversample wJMI v wSVM wJMI v Oversample
fbis 4/13/0 1/13/3 5/11/1 7/10/0 2/15/0
la12 1/5/0 0/3/3 0/5/1 4/2/0 2/4/0
ohscal 2/8/0 0/0/10 0/1/9 10/0/0 10/0/0
re0 0/13/0 0/13/0 0/13/0 0/13/0 0/13/0
re1 1/24/0 0/25/0 0/25/0 2/23/0 0/25/0

7.5 Chapter Summary

In this chapter we looked at the effects of choosing a different loss function than

the joint likelihood we considered in the previous three chapters. We saw that

choosing a cost-sensitive conditional likelihood allowed the derivation of cost-

sensitive feature selection criteria, based upon Guiaşu’s weighted information

theory. We proved several essential properties of the weighted mutual information

measure to ensure it’s suitability as a selection criterion.

As with the criterion derived in Chapter 4, some assumptions are necessary

to produce a feature selection criterion which is estimable across many datasets.

We thus investigate a weighted variant of JMI as it was found to perform the

best in our empirical study from Chapter 5, and a weighted variant of MIM as a

baseline.

We show how the cost-sensitive nature of our new criteria allows the con-

struction of a cost-sensitive system from a cost-insensitive classifier coupled with

the cost-sensitive feature selection. This compares favourably with other cost-

sensitive techniques based around altering either the classifier or the training

data.
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Figure 7.7: Ohscal results. Cost of mis-predicting class 9 is set to ten times
more than other classes. The weighted SVM and oversampling approaches clearly
focus on producing high recall, far higher than our method, however, this is only
achievable by sacrificing precision. Our approach improves precision and recall,
giving higher F-measure overall.



Chapter 8

Conclusions and future directions

We began this thesis by reviewing the literature on information theoretic feature

selection. This literature contained a forest of different selection criteria based

upon different permutations of information theoretic functions, with little under-

standing of the objective functions such criteria optimise. Our first result showed

that using an information theoretic criterion implies the objective function is the

log-likelihood of a particular model. We then proceeded to explore the literature

relating the different criteria to the one derived from the likelihood. Once we had

explained the literature we investigated the specific benefits of our framework,

looking at extensions which incorporate prior knowledge or cost-sensitivity. We

now provide a detailed summary of the contributions of this thesis, providing

answers to the questions posed in the first chapter.

8.1 What did we learn in this thesis?

The contributions of this thesis arose by considering the questions stated in Chap-

ter 1. We now review those questions, summarising the answers provided by this

thesis.

8.1.1 Can we derive a feature selection criterion which

minimises the error rate?

We answered this question in Chapter 4 by considering the joint likelihood of a

discriminative model as our objective function. This likelihood is maximised by

having a high predictive probability for all the true labels of a training dataset,

155
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when using parameters which have a high probability a priori. It is a proxy

for the error rate as high likelihood is a sufficient condition for a low error rate,

though it is not a necessary one. We saw that this likelihood could be expanded

into a series of terms with each term relevant for a particular component of the

error. We repeat Equation 4.10 for clarity below,

−� ≈ Ex,y

{
log

p(yi|xi,θ)

q(yi|xi,θ, τ)

}
+ I(X¬θ;Y |Xθ) +H(Y |X)− 1

N
log p(θ, τ).

The first term denotes the quality of our predictor compared to the optimal

predictions for the selected feature set, this takes the form of a KL-Divergence,

and is zero when our predictor makes the optimal predictions. The second term

denotes the quality of our selected feature set compared to the full feature set,

this takes the form of a conditional mutual information and is zero when our

selected feature set contains all the relevant information. The third term denotes

the quality of the data itself, and the final term is the prior probability of the

model parameters. We can therefore think of Equation 4.10 as expanding the

likelihood thus,

−� ≈ predictor + feature set + data + prior, (8.1)

where we wish to minimise the first three terms, and maximise the fourth. In

general we can do little to adjust the quality of our training data, and we should

not adjust our priors based upon the data, therefore the first two terms are the

quantities we can minimise. Making the filter assumption from Definition 8 allows

us to first select a feature set which maximises the likelihood, and then to build

a classifier which maximises the likelihood based on that feature set.

One further insight based upon this expansion is that filter methods which

choose to maximise this likelihood are in effect wrapper methods using a perfect

classification model. Even the filters themselves appear to be simple classifiers, as

they construct a probability distribution and measure its predictive performance

with a KL-Divergence. This perspective shows that when choosing to maximise

the joint likelihood filters and wrappers differ only in the method by which they

search the feature space, and the assumptions made by the classification model.

Using a classification model with few assumptions and maximising the model

likelihood can be seen as a filter maximising the mutual information of the feature

set.
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Returning to the specific problem of filter feature selection we can derive the

optimal selection criterion. If we choose to iteratively maximise the likelihood by

selecting (or removing) features greedily then we should select the feature which

maximises (minimises) the conditional mutual information between that feature

and the class label, conditioned upon the selected feature set plus the prior term

for the current feature set. We note that in the iterative updates the prior term

is a ratio therefore if we use a flat uninformative prior, the prior term cancels.

This leads to a maximum likelihood update rule based solely upon the conditional

mutual information. With this derivation and the iterative update rules we are

ready to answer the next question, by linking our derived updates to the selection

criteria from the literature.

8.1.2 What implicit assumptions are made by the infor-

mation theoretic criteria in the literature?

We looked at this question in Chapter 5, considering the criteria from the lit-

erature as approximations to our optimal criterion derived in Chapter 4. We

considered the link to our optimal criterion assuming there was a flat prior over

the possible feature sets, as the criteria we investigated did not include prior

knowledge. This link makes explicit the objective function underlying each of the

published criteria, namely the joint likelihood of a discriminative model.

As the optimal criterion is intractable to estimate, each of the published cri-

teria make implicit assumptions which reduce the complexity of the estimation

problem. These assumptions make the criteria approximate iterative maximisers

of the joint likelihood. The main theoretical difference between the criteria is

whether they assume the features are class-conditionally independent. Without

this assumption there is an additional class-conditional term in the criteria. One

other important theoretical point is whether they provide a mechanism to bal-

ance the relative magnitude of the redundancy terms against the relevancy term.

To ascertain how these differences impact the criteria in practice, we conducted

an empirical study of 9 different heuristic mutual information criteria across 22

datasets. We analysed how the criteria behave in large/small sample situations,

how the stability of returned feature sets varies between criteria, and how sim-

ilar criteria are in the feature sets they return. In particular, we looked at the

following empirical questions:
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How do the theoretical properties translate to classifier accuracy?

Summarising the performance of the criteria under the above conditions, includ-

ing the class-conditional term is not always necessary. Various criteria, for exam-

ple mRMR, are successful without this term. However, without this term criteria

are blind to certain classes of problems, e.g. the MADELON dataset (see Section

5.3), and will perform poorly in these cases. Balancing the relevancy and redun-

dancy terms is however extremely important — criteria like MIFS, or CIFE, that

allow redundancy to swamp relevancy, are ranked lowest for accuracy in almost

all experiments. In addition, this imbalance makes the criteria unstable, causing

them to become sensitive to small changes in the supplied data.

How stable are the criteria to small changes in the data?

Several criteria return wildly different feature sets with just small changes in the

data, while others return similar sets each time, hence are ‘stable’ procedures. As

we might expect the most stable was the univariate mutual information as it has

the simplest distributions to estimate, followed closely by JMI [110, 80]; while

among the least stable are MIFS [6] and ICAP [58].

How do criteria behave in limited and extreme small-sample situations?

In extreme small-sample situations, it appears the above rules (regarding the

conditional term and the balancing of relevancy-redundancy) can be broken — the

poor estimation of distributions means the theoretical properties do not translate

immediately to performance.

Do the different criteria return different feature sets?

We might ask how the theoretical differences between the criteria impact the se-

lected feature sets, and so using the stability measures we compared the feature

sets returned by each of the criteria with each other criterion. If we visualise the

differences using multi-dimensional scaling (see Figure 5.5) we can see a cluster

of criteria which “balance” the relevancy and redundancy terms (or ignore redun-

dancy completely in the case of MIM), and each criterion which does not balance

the terms is very different from all other criteria. This explains why the empirical

performance of many of the criteria is so similar.
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Having explained the behaviour and performance of the criteria in the litera-

ture we looked at the other benefits provided by our probabilistic framework for

feature selection.

8.1.3 Developing informative priors for feature selection

One major benefit of our joint likelihood approach to feature selection is the nat-

ural incorporation of domain knowledge in the form of priors over the selected

feature set θ. In Chapter 6 we looked at simple forms for these priors, and

showed how to combine them with selection criteria from the literature. During

this process we saw how the IAMB algorithm for Markov Blanket discovery can

be seen as another special case of our joint likelihood framework, operating under

a specific sparsity prior. We used this insight to extend IAMB to include other

information in the prior, specifically to include domain knowledge over the pres-

ence or absence of nodes in the Markov Blanket. This result shows local structure

learning algorithms using conditional independence testing as instantiations of a

likelihood-based score and search technique, similar to the result by Cowell [25]

for global structure learning algorithms. As we might expect the inclusion of cor-

rect knowledge improved the recovery of the Markov Blanket in several artificial

datasets. However the performance still improved even when half the supplied

“knowledge” was incorrect. This improvement was greatest when using complex

datasets and small amounts of data.

8.1.4 How should we construct a cost-sensitive feature se-

lection algorithm?

In Chapter 7 we answer this question by deriving a cost-sensitive feature selection

criterion directly from a cost-weighted likelihood. This weighted likelihood min-

imises an upper bound on the empirical risk. The derived criterion is based upon

a weighted mutual information, which generalises Shannon’s mutual information

to incorporate the importance (or cost) of certain states. To allow the use of such

a function we proved two novel properties of this weighted measure, namely the

chain rule, and the non-negativity of information. Our derived criterion works

with costs which depend solely upon the label, as otherwise the non-negativity

property will not necessarily hold.

We then empirically tested this cost-sensitive criterion against several other
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methods for creating cost-sensitive classification systems. We showed that us-

ing cost-sensitive information theoretic feature selection effectively converts a

cost-insensitive classifier into a cost-sensitive one, by adjusting the features the

classifier sees. We see this as an analogous process to that of adjusting the data

via over or undersampling to create a cost-sensitive classifier, but with the crit-

ical difference that we do not artificially alter the data distribution. We found

that while classical cost-sensitive classifiers traded off precision to improve recall,

our new cost-sensitive feature selection methodology improved both precision and

recall in the upweighted class(es).

As this thesis is of finite size there are obviously many interesting areas which

remain for future study in the field of information theoretic feature selection, and

we review some of them in the next section.

8.2 Future Work

While this thesis has consolidated much work in information theoretic feature se-

lection, allowing many techniques to be described as instantiations of a likelihood-

based framework, it has also revealed several interesting areas for future work.

The first area arises from the derivation in Chapter 4. In that chapter we

constructed a probabilistic framework to find the Maximum a Posteriori solution

to the feature selection problem. A natural extension of this work would be to

investigate a fully Bayesian solution to the feature selection problem. Our work

finds the modal value of the posterior distribution over θ, but it is well known that

the MAP solution may not be close to the center of mass of the full posterior [10],

and thus it may not accurately represent the posterior distribution. A Bayesian

solution to the feature selection problem would allow detailed investigations of the

posterior for θ, possibly highlighting feature sets which more accurately represent

the posterior distribution. We expect that such a solution would take the form of

a Dirichlet process across the space of possible θ values, though we have invested

little time in deriving such a solution.

The second area is based upon the insights gained into filter feature selec-

tion from Chapters 4 & 7. In those chapters we began by choosing a particular

objective function to maximise, respectively the joint likelihood and weighted

conditional likelihood. In each case we derived different selection criteria, though

both were based upon information theory. There exist many other filter criteria,



8.2. FUTURE WORK 161

many of which do not have links to precise objective functions. It may be in-

teresting to investigate the links between a criterion such as the Gini Index [34],

and derive the objective function implied by the choice of such a criterion. It is

interesting to note that the log-likelihood is an instance of a proper scoring func-

tion [44], and other such scoring functions may also have links to feature selection

criteria. One obvious extension would be to develop feature selection from a like-

lihood which combines both priors over θ, and differing misclassification costs,

to unify the methods proposed in Chapters 6 and 7.

The third area is based upon the literature in information theoretic feature

selection which we examined in Chapter 5. There we saw how the majority of

published criteria make specific assumptions about the underlying distributions,

and how all the criteria made the assumption that there are only pairwise in-

teractions between features. Relaxing this assumption leads to more complex

information theoretic terms, which consequently have higher data requirements

to ensure they accurately estimate the mutual information. An interesting topic

of study would be to combine this insight with work on entropy estimation [83] or

analysis of the variance of the mutual information [56], to determine for any given

dataset how many of these complex terms it is possible to estimate accurately,

then adjusting the feature selection criterion accordingly. This would allow an

adaptive feature selection criterion which adjusts to the amount of available data,

behaving like Jcmi when there are many thousands or millions of datapoints, and

scaling back through JMI towards MIM as the number of datapoints shrinks.

The fourth area is more theoretical in nature, and relates to the weighted

mutual information used in Chapter 7. In that chapter we defined the weighted

mutual information so that the weights are a function of a single variable, rather

than both variables in the mutual information. We proved how this ensures the

non-negativity of the measure, which is important for feature selection to ensure

we are maximising the likelihood. However the original weighted conditional

likelihood of Dmochowski et al. [31] does not include this constraint, and the

weights are allowed to depend upon both x and y. In this case it is possible for

the weighted mutual information to take negative values, and a very interesting

subject is the nature of such negative values. This gives rise to some interesting

questions: “What does a negative Iw imply about the nature of the relationship

between X and Y ?”, and “What does it imply about the cost-sensitive problem

that we wish to optimise?”.
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The final area involves extending the techniques presented in this thesis to new

problems. The material on priors in Chapter 6 considered very simple priors, and

more performance may be available by utilising more complex and informative

priors. The material on cost-sensitivity is framed in the context of multi-class

problems as those are more likely to exhibit the property where each label has a

different group of predictive features. Exploring two class problems where this is

the case, and extending the framework to cope with multi-label datasets would

provide interesting applications of the weighted feature selection approach.

One topic which we chose not to consider in this thesis is the interaction

between the search method and the feature selection criterion. Preliminary work

suggests that for some of the criteria examined in Chapter 5 the choice of search

method is irrelevant to the feature set returned. Forward searches, backwards

searches and floating searches all returned the same (or very similar) feature sets,

across a number of datasets. Also using the sum of J(Xj) over the whole selected

feature set as the objective function returned the same feature sets as the more

greedy search methods mentioned earlier. It would be interesting to do a more

extensive empirical study to see if this strange effect is borne out across many

datasets as it implies the choice of search method has little relevance compared

to the choice of selection criterion. This is a rather counter-intuitive result given

the performance gains made with other feature selection criteria when changing

the search method (e.g. Pudil et al. [91]), and suggests there may be a deeper

insight into why information theory does not need complex search techniques.
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